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ABSTRACT 
The richness of the information in photos can often threaten privacy, 
thus image editing methods are often employed for privacy protec-
tion. Existing image privacy protection techniques, like blurring, 
often struggle to maintain the balance between robust privacy 
protection and preserving image usability. To address this, we intro-
duce a generative content replacement (GCR) method in image pri-
vacy protection, which seamlessly substitutes privacy-threatening 
contents with similar and realistic substitutes, using state-of-the-
art generative techniques. Compared with four prevalent image 
protection methods, GCR consistently exhibited low detectability, 
making the detection of edits remarkably challenging. GCR also 
performed reasonably well in hindering the identification of specific 
content and managed to sustain the image’s narrative and visual 
harmony. This research serves as a pilot study and encourages 
further innovation on GCR and the development of tools that enable 
human-in-the-loop image privacy protection using approaches 
similar to GCR. 

CCS CONCEPTS 
• Security and privacy → Privacy protections; Usability in 
security and privacy. 
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1 INTRODUCTION 
Images form the foundation of technology-supported communica-
tion, including online social networks [11], daily-life recording [13], 
and information exchanges at workplaces [68]. Meanwhile, pri-
vacy issues stemming from the pervasive image capturing and 
sharing culture online are highlighted and studied in the field 
of human-computer interaction (HCI) [41] and machine learning 
(ML) [46, 53, 80]. Image obfuscation is thus critical as one of the 
direct approaches to privacy protection. Obfuscation techniques 
help block potentially malicious detection of privacy-threatening 
visual information [41]. They also present a unique challenge: 
as obfuscation intensifies, both the usefulness of images and the 
willingness to share content diminish [29, 30, 44, 67]. To achieve a 
better balance of protection and utility of images, existing research 
has investigated various alternative obfuscation methods, including 
style transformations [24], sticker overlays [40], avatars [44], and 
cartoon substitutes [31]. However, as these methods introduce arti-
ficial visual components, resultant images may cause unnaturalness 
and may diminish viewers’ experience. 

Generative artificial intelligence (AI) can generate realistic im-
ages with various prompts [20, 52, 59] and enable various image 
editing applications [4]. We envision that generative AI can offer 
novel image obfuscation methods with unique value in image 
privacy protection, through seamless replacement of visual content 
in images. Computer vision research has already explored the 
technical development of such approaches for human faces [17, 62] 
and vehicle plates [76]. A deep understanding of how obfuscation 
by such technology could impact user perception and experience 
would benefit future interactive system and interface designs using 
generative AI for image privacy protection. 
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Figure 1: Examples of images processed by our proposed method of generative content replacement (GCR). In the provided 
images, the highlighted contents were annotated as privacy-threatening in an image privacy dataset called DIPA [73]. GCR 
removed these segments and introduced similar substitutes to replace them. This strategy ensures protection against revealing 
identifiable information but allows for the overall narrative to be communicated through shared images. 

In this paper, we explore the feasibility of image-generative AI in 
obfuscating multiple different types of privacy-threatening content. 
This includes an examination of user perceptions and experiences 
against other commonly employed methods. Our method, Genera-
tive Content Replacement (GCR), leverages state-of-the-art image 
captioning [39] and generative diffusion AI [57] (Figure 1). GCR is 
not constrained by the types of objects to be obfuscated, providing a 
capability to enable image obfuscation in realistic, practical settings. 

Specifically, this work offers the following three contributions 
to the field of HCI and machine learning: 

• Development of GCR, using a state-of-the-art image caption-
ing method [39] and generative diffusion AI [57]. 

• An experiment using generative content replacement (GCR) 
with 270 images covering 23 privacy-threatening categories 
against four common protection methods, to encompass 
a plethora of realistic image editing scenarios for privacy 
protection. 

• Data analysis results that validate the advantages of GCR 
over existing common image protection methods. 

We found that our participants were not able to detect edits by 
GCR for protection in 60% of the images tested, confirming high 
visual integration of GCR. The results also show that GCR main-
tained the story of the original images and demonstrated higher 
visual harmony in the edited images than blurring, colorfilling, and 
removal. These findings can inspire researchers to design interfaces 
incorporating GCR for image privacy protection and encourage 
machine learning (ML) experts to develop algorithms tailored for 
GCR. 

2 RELATED WORK 
Image privacy protection is a topic of significant interest in both the 
HCI and ML communities. Recent literature reviews have consoli-
dated various methods of image privacy protection concerning hu-
man vision [1, 46], computer vision [28, 45], and both domains [80]. 
Here, we present related work on image protection methods and 
associated perceptual experiments from an HCI perspective. In 
addition, Section 2.3 briefly introduces generative models in visual 
content generation, explaining our proposition that GCR could be 
a novel method for image privacy protection, effective against both 
human vision and computer vision. 

2.1 Image Protection Methods 
Our primary focus is investigating the usability of GCR through 
human-centered approaches. Therefore, techniques tailored to thwart-
ing malicious computer-vision detection, such as image perturba-
tion [10], are not part of our discussion. Similarly, non-edit image 
protection approaches, like access control [49], are excluded due to 
our specific emphasis on direct image data protection. 

Commonly employed filtering methods such as mosaics have 
been leveraged to prevent privacy breaches by photo owners [69], 
co-owners [64], and bystanders [7, 21, 55]. However, heavy imple-
mentation of these methods often results in a significant decline in 
both usability and sharing inclination of images [67], thus limiting 
their applicability. Alternatives that employ transformation effects 
such as aging [51] and style transformation [30] were proposed 
to offer better visual aesthetics for edited images. However, ad-
vancements in adversarial methods like upsampling [2] and reverse 
generation [81] can potentially revert transformed images to their 
original state, weakening the purpose of privacy protection. 
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A more robust approach involves the direct removal of privacy-
threatening contents in images, termed image inpainting or re-
moval [8]. While this eliminates the appearance of privacy-threatening 
content, it might lead to potential misinterpretations and unnat-
ural feelings because of information loss [53]. Researchers have 
attempted to address this by introducing non-privacy-threatening 
substitutes like stickers [40], avatars [44], and cartoon replace-
ments [31]. Although they fulfill their intended purpose, their prac-
ticality remains constrained. For instance, methods that depend on 
pre-existing material libraries for sticker or cartoon replacements 
might become ineffective if suitable matches are not found. Fur-
thermore, these substitutions often exhibit a visual disconnect from 
the rest of the image due to their distinct styles. While some people 
might appreciate stylistic alterations in images, such modifications 
might be less preferred when individuals seek to share photos 
retaining their original aesthetic. We, therefore, argue that an image 
content replacement method using realistic substitutes can be more 
effective in ubiquitous scenarios of image privacy protection. 

2.2 Perception of Image Protection Methods 
HCI research has deeply investigated how people perceive image 
protection techniques. One pivotal finding was the negative corre-
lation between the sharing intentions of images and the intensity 
of their protection, through applying mosaics of varying intensities 
on the same set of images [67]. 

In subsequent studies, researchers further explored the visual 
perception of images edited using diverse methods. Hasan et al. 
conducted a thorough examination of five prevalent image protec-
tion strategies: Blurring, Silhouette, Pixel, Masking, and Edging [29]. 
By using 100 images across 20 unique scenarios, they introduced 
four metrics to assess the trade-off between privacy and utility for 
each method, providing a comprehensive understanding of how 
each technique performed in various scenarios. Building on this, 
Hasan et al. studied if style transformation outside of the edited 
areas could increase the aesthetic of images, though their findings 
didn’t indicate a significant boost in viewers’ satisfaction [30]. 

Li et al.’s comparative analysis examined the influence on the 
identification of 14 specific individuals using eight different protec-
tion methods [44]. Their results emphasized inpainting and avatar 
as techniques that best balanced between avoiding privacy leakages 
and maintaining viewer perception. 

Zhao et al. recently characterized the dimensions of human 
vision adversary protection into two primary categories: imper-
ceptibility and perceptibility [80]. Imperceptibility, in particular, is 
a critical metric in image protection and evaluates the degree to 
which the edits are seamlessly integrated into images, serving as an 
indicator of the “naturalness” of a protection approach. Following 
these foundational studies, our research adopts their methodologies, 
selecting representative image protection techniques for compar-
ison with GCR in a two-stage experiment for evaluating GCR’s 
feasibility in various aspects of human perception. 

2.3 Generative Models of Images 
In this section, we introduce mainstream generative models, includ-
ing the generative adversarial network (GAN) and diffusion models, 

and then introduce their applications and argue their potential in 
privacy protection. 

GAN was one of the most common generative model algorithms [26]. 
In general, GANs are finetuned by training two neural networks 
concurrently. The generator network, G, produces synthetic con-
tent, while the discriminator network, D, evaluates the authenticity 
of that content against ground-truth data. The generator’s goal is to 
continually improve its content generation until the discriminator 
can no longer reliably discern between the synthetic and real 
data. In privacy protection, researchers leveraged the potential 
of GANs to replace identifiable details with generated content. 
Recent advancements have exploited the capability to modify the 
latent space within GANs, leading to nuanced alterations in the 
generated outputs, therefore preventing privacy-threatening de-
tails from being identified. Examples include subtle changes in 
facial features [62], adding makeup effects [32], and the trans-
formation of identifiable components such as vehicle plates in 
privacy-threatening images [76]. 

Diffusion models, on the other hand, can create visual content 
through a structured denoising procedure. Unlike traditional image 
generation, which starts from scratch, diffusion models initiate with 
a noisy version of the target image and iteratively refine it to achieve 
the desired output [57, 58]. These models are typically initialized 
based on prompts, which can range from textual descriptions to 
visual cues such as image contours [77]. Recent advancements 
in interactive applications of diffusion models enable people to 
specify the desired content to replace marked areas in target images, 
ensuring a coherent blend with the rest of the image [52, 79]. 

Images generated by diffusion models have been demonstrated 
to be highly realistic, closely resembling photographs taken in 
the real world [50]. Given the capabilities of diffusion models, 
we posit that these interactive generative techniques hold great 
promise for boosting privacy protection in ubiquitous scenarios. 
When detecting privacy-threatening content, users could seam-
lessly replace it with realistic generative content that retains the 
image’s narrative coherence, and original style as well as blocks any 
potential malicious observation or detection. This work investigated 
how GCR works in ubiquitous scenarios of image privacy pro-
tection, scrutinizing the effectiveness of state-of-the-art diffusion 
model-generated visual content in protecting image privacy from a 
human-centered perspective. 

3 STUDY DESIGN 

3.1 Research Questions 
To frame our research, we first define Generative Content Replace-
ment (GCR) as “an image privacy protection method employing 
generated visual substitutes to replace content in images that may 
compromise privacy”. To examine the user perception and expe-
rience of GCR, we frame our investigation around three research 
questions: 

• RQ1. To what extent can viewers detect the edits with GCR 
(detectability)? 

• RQ2. To what extent can viewers identify original content 
from images edited with GCR (vulnerability)? 
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• RQ3. How well do images processed by GCR perform us-
ing common evaluation metrics derived from related image 
protection research? 

One of the main objectives of our study is human vision adver-
sary protection, as discussed by Zhao et al. [80], who identify the 
ability of humans to detect image manipulation as a key evaluation 
metric across modern image protection methods. In our study, we 
evaluate this as detectability, and, additionally, evaluate the related 
cognitive effort of detecting the edit. We also study the vulnerability 
of image protection methods, referring to the degree to which 
people are able to identify original contents covered or replaced 
with image protection methods. Prior to gauging vulnerability, the 
participants were informed that the image being observed was 
edited. This ensures that vulnerability measurements are not biased 
towards just the participants who correctly recognized an image 
being edited. 

Finally, we include the following evaluation metrics in the study 
to emphasize human factors of using GCR: 

• Narrative coherence, inspired by work by Hasan et al. [29, 30], 
which emphasizes the importance of retaining sufficient 
information from the original image. Similarly, in this work, 
we define the preservation of information sufficiency as 
narrative coherence that measures how well the original story 
is preserved in edited images. As such, it is a natural choice 
in assessing image privacy protection methods in contexts 
where people e.g. wish to share images online to share an 
experience but hide specific aspects from the images. 

• Visual harmony, is likewise inspired by Hasan et al. [29] who 
discuss how disruptive changes to the visual or aesthetic 
appeal of the image deteriorate the user experience of image 
protection methods. 

• User satisfaction, discussed in this context by Li et al. [44] 
and Hasan et al. [29], and directly indicative of people’s 
willingness to share photos online [18]. 

3.2 Generative Content Replacement 
Figure 2 illustrates the workflow of our GCR method implemented 
for this study. It leverages textual prompts to produce visual sub-
stitutes that match the type of the original content. When there 
exists visual content within an image that threatens privacy, GCR 
utilizes BLIP-2 [39], a state-of-the-art image captioning model, to 
automatically produce two textual descriptions: 𝑇𝐶 for the specific 
privacy-threatening content and 𝑇𝐼 for the entire image. Merg-
ing the two descriptions yields a cohesive prompt, framed as “𝑇𝐶 
within the context of 𝑇𝐼 ”. Subsequently, the image stripped of its 
privacy-threatening content is combined with this prompt and 
processed using the stable diffusion v2.1 model [57]. This model 
performs a 50-iteration denoising cycle with DPM-Solver++ [48] as 
the sampling solver, eventually producing an image that integrates 
generative substitutes seamlessly into the removed area. We directly 
used the bounding box annotations available in an image privacy 
dataset called DIPA [74] (detailed in Section 3.4) to inform our 
system of where the edit should be placed. While further improving 
this GCR method may be possible (e.g., employing models and 
algorithms specifically designed for this purpose or exploring more 
appropriate prompts), our present work focuses on understanding 

user perceptions of GCR implemented with the latest machine 
learning models available as of summer in 2023. The rightmost 
column in Figure 3 shows example images with GCR. 

3.3 Reference Image Privacy Protection 
Methods 

While there exist numerous editing methods for image privacy 
protection, previous research did not show strong differences in 
human perception among blurring and pixelation [29], as well 
as among various style transformations [30]. To simplify our ex-
perimental designs, we selected four representative methods, each 
occupying a distinct space in terms of detectability and vulnerability, 
summarised in Table 1. The four columns besides the leftmost in 
Figure 3, show example images with these approaches. 

• Blurring. Our blurring method entails copying pixels from 
an image downsampled by a factor of 30x to the original, 
thereby emphasizing its role in privacy protection. As the 
blurring approach essentially presents a reduced-resolution 
version of the original content, we posited that it possesses 
high detectability and high vulnerability. 

• Cartooning. We decided to leverage a GAN-based model to 
perform direct cartoonization for realizing arbitrary privacy-
threatening content protection [71]. It serves to obfuscate 
details, such as eyes in a face or text in a document, to 
prevent potential privacy leakages. As cartoonization is not 
as striking as blurring or colorfilling and maintains some 
information about the original content (e.g., shapes, sizes, 
and colors), we consider this cartooning transformation an 
image privacy protection approach with low detectability 
and high vulnerability. 

• Colorfilling. We adopted a color-filling approach where each 
position within the edited areas is assigned a random pixel 
color. Although the term encryption has been used in prior 
work to describe similar methods [55], our implementation 
does not involve actual information encryption, but rather 
randomly changes the color value of each pixel. Given its 
pronounced visual effect, which entirely obfuscates the infor-
mation in the edited regions, we consider that the colorfilling 
is an approach that exhibits high detectability and low 
vulnerability. 

• Removal. While diffusion models can remove visual con-
tent [57], they may introduce unrelated foreground elements 
rather than seamlessly blending the stripped parts of images 
with their adjacent backgrounds. Therefore, we leveraged 
the best pretrained LAMA image inpainting model [66] to 
obliterate privacy-threatening content while extending ad-
jacent portions of the image stably. We consider that the 
removal technique is a method with low detectability and 
low vulnerability in both object-level and category-level 
identification. 

3.4 Image Selection and Processing 
Our objective was to deliver a comprehensive examination of GCR 
with reference methods. We chose DIPA [74], an image privacy 
dataset comprising 5,897 content-level annotations across 1,304 
images highlighting privacy-threatening content, as our data source. 
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Figure 2: The proposed workflow of generative content replacement (GCR) method. Utilizing an image input, our GCR method 
employs the BLIP-2 model [39] to formulate two distinct prompts: prompt 𝑇𝐼 that encapsulates the entire image description, 
and prompt 𝑇𝐶 which focuses on the specific privacy-threatening content, as identified in DIPA [74]. Following this, GCR 
incorporates the original image, the mask obtained from DIPA, and a prompt articulated as "𝑇𝐶 within the context of 𝑇𝐼 ", into the 
stable diffusion v2.1 model [57]. This produces an output (here, highlighted by a red bounding box) where the privacy-infringing 
content has been seamlessly substituted with similar generated counterparts. 

Table 1: Comparison of the four image privacy protection methods in terms of their detectability and vulnerability. A lower 
level of detectability suggests that human vision (HV) is less likely to detect any edits, while higher vulnerability means that 
upon being informed of edits, individuals can more easily identify the original content from edits. 

High Vulnerability Low Vulnerability 

High Detectability Blurring Colorfilling 

Low Detectability Cartooning Removal 

DIPA provides annotations of multiple objects and categories of con-
tent in each image if they exist. In our study, however, we used the 
DIPA images to obfuscate only one category of privacy-threatening 
content (e.g., person, place identifier) per image. Thus, the privacy-
threatening content in each image in the study could consist of 
multiple objects, each encapsulated within a bounding box, but 
all within the same category. We then classified the data based on 
three parameter spaces to adequately represent and diversify the 
types of privacy-threatening content. 

• Relative Size. This represents the proportion of the content 
(as defined by its bounding box) to the image’s overall size. 
For annotated content containing multiple bounding boxes, 
we summed the sizes altogether. We filtered out content that 
was either too small (<0.005) or too large (>0.7) relative to 
the entire image size. The remaining images were divided 
into three categories: small (lowest 30%), medium (middle 
40%), and large (highest 30%) based on their relative sizes. 

• Relative Position. This parameter space represents where 
the privacy-threatening content is located in the image. We 

computed the distance between the center of the bounding 
box and the image’s center, divided by the image’s diagonal. 
For multi-object contents, we took an average number of all 
results of relative positions. The processed data was then 
divided into three segments: near, mid-range, and far from 
the image center with the same 30%-40%-30% split as the 
relative sizes. 

• Aspect Ratio. This parameter space represents the ratio of 
an object’s width to its height. We calculated an average 
number of all aspect ratio values for multiple objects in one 
image. We also devised three categories of vertical, balanced, 
and horizontal, and the same 30%-40%-30% split was applied. 

Our selection included 270 unique images so that they were 
uniformly distributed across the three parameters discussed above. 
While satisfying the above conditions, we ensured that the images 
we selected, to the extent feasible, evenly encompassed the 23 
privacy-threatening categories identified in DIPA rather than main-
tained the same occurrence distribution of these categories. Our 
data balancing, however, did not consider the factor of higher-level 
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Figure 3: Sample images from our selection. Each image was processed by GCR as well as the other four reference methods. The 
edited image regions are highlighted with red bounding boxes. 

descriptions of each category (Section 4.2) because annotations in 
some DIPA images exhibited high divergence. 

Figure 4 and Table 2 detail the distributions of bounding boxes 
and distributions of privacy-threatening content categories, respec-
tively. Each image was processed with GCR and the four reference 
methods explained in Section 3.3, resulting in five images with 
obfuscation for each original image (1,350 processed images in 
total). While this selection might not mirror the exact occurrence of 
privacy-threatening content in real-world photos, it was designed to 
ensure sample balance and consider different obfuscation scenarios. 

4 USER STUDY 
We conducted a two-stage experiment to benchmark GCR and 
investigate the research questions presented earlier. The procedure 
was approved by the institutional review board at the first author’s 
institution. 

4.1 Participant Recruitment 
We recruited participants through Prolific [56], a reliable crowd-
sourcing platform that proved to offer high-quality responses from 

participants [23]. The inclusion criteria of participants were native-
level English proficiency; primary usage of English in daily life; 
being 18 or older; and a willingness to view photographs. 

4.2 Pre-experimental Stage 
At the beginning of the experiment, we explained the overview 
of the tasks and expected workload to the participants. The par-
ticipants could first preview sample images from DIPA [73] to 
help them decide whether to proceed with viewing similar images 
during the study. As a safety measure, we informed participants 
that they were allowed to withdraw from the study at any time 
and for any reason. After their consent to participate, we asked 
them how carefully they would consider the potential of leaking 
five different types of privacy information (personal information, 
location of shooting, individual preferences/pastimes, social circle, and 
others’ private/confidential information) derived from higher-level 
descriptions of different privacy-threatening types in DIPA (e.g., 
vehicle plate may indicate personal information and location of 
shooting) [73]. In other words, the five types assessed in the PreQ 
encompass the 23 distinct categories outlined in Table 2. Through 
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Figure 4: The distribution of bounding boxes on 270 privacy-threatening content selected from DIPA [74] in our study. Each 
circle symbolizes visual content to be processed in one image and is positioned relative to the image’s center. The circle’s 
diameter reflects the relative size of the bounding box within its respective image, though it is presented in a scaled manner to 
prevent visual clutter. The color variation indicates the aspect ratio of the bounding boxes, derived from their width-to-height 
ratio. 

this approach, we gauged the level of participants’ concerns re-
garding privacy-threatening information while keeping the task 
workload low. 

• PreQ. How carefully do you consider the potential of leaking 
<each of the five privacy information types, one at a time> 
when you are sharing photos? 
Response: [1: not at all carefully] – 2 – 3 – [4: neutral] – 5 – 
6 – [7: extremely carefully] 

4.3 Stage I - Assessing Detectability 
After the pre-experimental questionnaire, participants were asked 
to perform tasks associated with edit detectability of given images 
to answer RQ1. 10 randomly-selected images from our 1,350 edited 
images were shown to each participant. If they identified edits, we 
further required them to locate the edited region by clicking in the 
given images, and rate the difficulty of detecting the corresponding 
edit. We note that participants were not informed whether the 
given images contained any edits, to avoid potentially biasing their 
responses. The specific questions were listed as follows: 

• Q1-1: Edit Detectability. Do you believe the photo has 
been digitally edited (i.e., has some visual information been 
changed from the original version taken in real life)? 
Response: yes / no 
If the response to Q1-1 was yes, participants were presented 
with the subsequent questions. 

• Q1-2. Please click on the part of the photo where you believe 
the editing has been applied. 

• Q1-3: Perceived Difficulty of Edit Detection. How diffi-
cult or easy is it to detect that the photo has been edited? 
Rate on a scale of 1-7. 
Response: [1: extremely easy]– 2 – 3 – [4: neutral] – 5 – 6 – 
[7: extremely difficult] 

In one randomly chosen image of the 10 images processed by 
each participant, we also added an additional question item as an 
integrity check that instructed the participant to choose the option 
strongly agree: 

• Integrity Check. For this question, please select the option 
"strongly agree". 
Response: [1: strongly disagree] – [2: disagree] – [3: neutral] 
– [4: agree] – [5: strongly agree] 

In the subsequent analysis, we ignored data from participants who 
failed the integrity check. 

4.4 Stage II - Assessing Vulnerability And other 
Perception Evaluation 

After participants finished all the tasks in the first stage, we dis-
closed that all these images had been edited and asked them to 
respond to additional questions to answer RQ2 and RQ3. We juxta-
posed each of the edited images assigned in Stage I and its original 
image with the location of the edit highlighted in a red bounding 
box. A toggle button next to each image set allowed participants 
to view only the region where the edit was employed. We did not 
reveal the name of the obfuscation method to participants at this 
stage to avoid potential biases (e.g., GCR may create an impression 
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Table 2: The distribution of selected privacy-threatening content in our research according to 23 privacy-threatening categories 
identified by DIPA [74], also presented by three parameter spaces we defined in Section 3.4. All divisions were 30%-40%-30% 
split. We selected 10 images for each combination of factors: relative size, relative position, and aspect ratio. This resulted in a 
total of 270 images, with each split interval of every parameter space comprising 90 images, as depicted in the last row. 

Category 
Relative Size Relative Position Aspect Ratio All 

small medium large near mid-range far vertical balanced horizontal 

Accessory 7 6 1 5 5 4 4 4 6 14 
Book 5 4 6 5 6 4 4 5 6 15 
Cigarette 2 0 0 1 1 0 0 1 1 2 
Clothing 5 4 5 4 4 6 5 4 5 14 
Cosmetics 0 1 4 2 2 1 3 1 1 5 
Electronic Device 2 2 1 1 2 2 2 1 2 5 
Finger 2 1 4 1 3 3 1 5 1 7 
Food 2 5 2 2 4 3 3 2 4 9 
Home Interior 5 4 5 4 5 5 6 4 4 14 
Identity 3 5 5 5 4 4 1 8 4 13 
Machine 4 2 2 2 5 1 3 2 3 8 
Musical Instrument 3 6 5 5 6 3 6 5 3 14 
Person 6 4 5 5 4 6 8 5 2 15 
Pet 3 7 5 7 3 5 5 6 4 15 
Photo 2 2 2 4 1 1 0 5 1 6 
Place Identifier 6 4 5 5 4 6 8 4 3 15 
Printed Material 5 4 5 3 5 6 4 5 5 14 
Scenery 4 5 5 6 3 5 6 2 6 14 
Screen 5 4 5 5 5 4 3 7 4 14 
Table 5 4 4 4 5 4 1 3 9 13 
Toy 4 6 4 5 4 5 5 4 5 14 
Vehicle Plate 5 5 5 3 6 6 5 3 7 15 
Others 5 5 5 6 3 6 7 4 4 15 

Sum of The All 90 90 90 90 90 90 90 90 90 270 

that it is a novel approach). We asked the following questions for 
each image set: 

• Q2-1: Edit vulnerability. To what extent do you agree that 
you can accurately identify the particular original object, by 
only giving its corresponding edit? 

• Q2-2: Perceived Confidence in Maintaining Narrative 
Coherence. To what extent do you agree that you can 
recognize the object in the edited image as (a/an) category 
name of the content, despite not being the same one as the 
original one? 

• Q2-3: Perceived Visual Harmony with Original Images. 
To what extent do you agree that the edited content visually 
blends with the rest of the image, maintaining the visual 
harmony as well as the original object did? 
Response for Q2-1, Q2-2 and Q2-3: [1: strongly disagree] 
– 2 – 3 – [4: neutral] – 5 – 6 – [7: strongly agree] 

• Q2-4: Perceived Overall Satisfaction on Edited Images. 
To what extent do you find the photo with the edit satisfying? 
Response: 1: [extremely unsatisfying] – 2 – 3 – [4: neutral] 
– 5 – 6 – [7: extremely satisfying] 

• Q2-5. Please click on the corresponding part of the original 
image that matches the object edited in the given edited 
image. 

The category name in Q2-2 was derived from DIPA’s annota-
tions according to 23 identified categories of privacy-threatening 
content (Table 2). For Q2-3, while Hasan et al. used the phrase 
“This photo looks visually appealing” to understand the aesthetic 
impact of edits [29, 30], we believe that aesthetic perceptions can 
be deeply subjective. Therefore, we chose “visual harmony” as a 
more objective measurement that focuses on the preservation of 
the image’s original style. To ensure that participants understood 
where exactly the edit occurred in each of the given images, we 
included Q2-5. In addition, we incorporated a similar integrity 
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check in this stage for another randomly chosen image as in stage 
I. 

5 RESULTS 

5.1 Participants 
We recruited a total of 135 participants. 14 participants did not pass 
our integrity check, leaving us with 121 valid participants. The 
demographic distribution based on gender, age, student status, and 
employment status is detailed in Table 3. The “Others” employment 
status includes participants who were “not in paid work”, “start 
a new job within the next month”, and cases where the data had 
expired in Prolific. For their ethnicity, 92 (76.0%) participants were 
white, 15 (12.4%) were Black, 7 (5.8%) were Asian, 6 (5.0%) were 
mixed and 1 claimed as others (0.8%). They came from 9 different 
countries: United Kingdom (84 participants), United States (17), 
South Africa (7), Nigeria (4), Ireland (3), Canada (2), Zimbabwe 
(2), India (1), and New Zealand (1). The average time taken by 
participants from starting the task to its completion was 21.6 min-
utes. Every participant was compensated £3 upon task completion, 
regardless of their performance in the integrity check. 

5.2 Edit Detectability Evaluation 
Table 4 presents our experimental results for Edit Detectability 
and Perceived Difficulty of Edit Detection of all valid responses. In 
addition to reviewing answers for the sanity check questions, we 
analyzed if participants accurately identified the edited regions 
by examining the responses for Q1-2 and Q2-5. We detected 48 
occurrences in Stage I and 14 in Stage II where participants’ clicks 
were outside the bounding boxes in DIPA [73] even with a 10% 
error tolerance. We excluded responses for images associated with 
these inaccurate clicks as we regarded that participants were not 
able to identify the locations of edits precisely or misunderstood. 
This removal resulted in 1,148 sets of valid responses. 

5.2.1 Q1-1: Edit Detectability. The columns under Q1-1 and NP 
in Table 4 show the number of responses and the ratio of how 
frequently participants responded negatively (i.e., they did not find 
any edits), respectively. GCR exhibited the lowest edit detectability 
rate. The results revealed that, without explicit pointers, 60% of 
the edits processed through GCR escaped recognition by partici-
pants. We conducted a logistic regression analysis to determine 
whether participants could detect edits (0 = yes, 1 = no). We summed 
the responses to the five questions of PreQ per participant as 
their privacy concern level, inspired by previous studies [3, 54]. 
Our independent variables included protection methods (i.e., GCR 
and four reference methods), relative size, relative position, aspect 
ratio, and privacy concern level. Protection methods was treated as a 
categorical variable, and GCR was set as the reference group. Other 
variables were treated as continuous variables. We weighted the 
data according to the proportion of yes and no responses to avoid 
biases toward the majority class. 

Table 5 details the coefficients, p-values of coefficients, odds ratio, 
and 95% confidence interval of odds ratio (95% CI) of each inde-
pendent variable resulting from the logistic regression model. We 
observe that all reference methods except removal were statistically 
significant negative predictors, indicating that it was more likely 

to detect the edits by blurring, cartooning, and colorfilling. When 
relative size of edit areas became larger, participants were inclined 
to detect more edits. In addition, if the edit was increasingly far 
from the image center, our participants tended to detect fewer edits. 

5.2.2 Q1-3: Perceived Difficulty of Edit Detection. GCR obtained 
the highest score of 3.33 in perceived difficulties of detecting edits. 
We conducted a Kruskal-Wallis test first, a method for analyzing 
non-normally distributed ordinal data [34], to investigate whether 
different protection methods influenced the perceived difficulty of 
identifying edits. The test confirmed a significant difference in the 
methods (𝜒 2 (4) = 166.45, 𝑝 < 0.001, 𝜂 2 = 0.23). We then employed 
the Mann-Whitney U test, a robust non-parametric analysis for 
ordinal data between two independent groups [82]. This allowed 
us to closely examine the pairwise mean differences between GCR 
and each reference method, highlighting the distinctiveness of GCR. 
Bonferroni correction was further implemented to account for the 
multiple comparisons and adjust the p-values accordingly. We also 
used Cliff’s Delta (𝛿) as a measure of effect size to quantify the 
magnitude of differences between GCR and other protection methods. 
Additionally, we reported the confidence intervals (95% CI) for the 
median difference in Mann-Whitney U tests. The Mann-Whitney U 
tests with each reference method revealed that GCR edits were more 
challenging to spot than those made by other methods (between 
GCR and blurring: (𝑈 = 15,150.0, corrected 𝑝 < 0.001, 𝛿 = 0.58, 95% CI 
= [1.63, 2.37]); between GCR and cartooning: (𝑈 = 7,735.5, corrected 
𝑝 < 0.01, 𝛿 = 0.31, 95% CI = [0.57, 1.43]); between GCR and colorfilling: 
(𝑈 = 15,436.0, corrected 𝑝 < 0.001, 𝛿 = 0.65, 95% CI = [1.63, 2.37]); 
between GCR and removal: (𝑈 = 6,530.5, corrected 𝑝 < 0.01, 𝛿 = 0.29, 
95% CI = [0.50, 1.50])). These analyses confirmed that GCR was the 
most difficult method to recognize in our study. 

We constructed a linear regression model to examine how other 
independent variables, including relative size, relative position, as-
pect ratio, and privacy concern level, influence the responses of this 
question. Our linear regression model showed that only relative 
size significantly predicted the perceived difficulty of edit detection 
(𝑏 = -1.499, 𝑡 (731) = -4.490, 𝑝 < 0.001), indicating larger edits were 
more easily to detect. We acknowledge that the model doesn’t offer 
strong predictive power for the response but presents it due to its 
statistical significance (adjusted 𝑅 2 = 0.025, 𝐹 (4, 731) = 5.806, 𝑝 < 
0.001). 

5.3 Vulnerabilities Evaluation 
In evaluating participants’ ability to identify original content based 
solely on the edited image, the colorfilling method was the most 
effective in obscuring identification, with an average rating of 2.82. 
The average rating for GCR was 3.79. 

Through a Kruskal-Wallis test, we confirmed that protection 
methods affected the perceived vulnerability (𝜒 2 (4) = 176.19, 𝑝 < 
0.001, 𝜂 2 = 0.15). More specifically, Mann-Whitney U tests with 
Bonferroni corrections revealed significant differences between 
GCR and reference methods except blurring (between GCR and 
cartooning: (𝑈 = 15,469.5, corrected 𝑝 < 0.001, 𝛿 = -0.40, 95% CI = 
[-2.39, -1.61]); between GCR and colorfilling: (𝑈 = 33,131.0, corrected 
𝑝 < 0.001, 𝛿 = 0.26, 95% CI = [2.58, 3.43]); between GCR and removal: 
(𝑈 = 29,989.0, corrected 𝑝 < 0.01, 𝛿 = 0.20, 95% CI = [1.58, 2.42])). 
The perceived vulnerability of GCR was not significantly different 
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Table 3: Demographic information of our participants.The “Others” in employment status includes “not in paid work”, “start a 
new job within the next month”, and “data expired”. 

Age Student or Not Employment All 
18–24 25–34 35–44 45–54 55– Yes No Data Expired Full-Time Part-Time Unemployment Others 

Male 7 22 33 12 6 17 58 5 51 6 10 13 80 
Female 7 14 6 9 5 6 33 2 22 8 2 9 41 
All 14 36 39 21 11 23 91 7 73 14 12 22 121 

Table 4: Distribution of answers collected in Stage I. Detailed references to the question descriptions are in Section 4. The 
term NP refers to the percentage of participants who failed to recognize edits, assessing detectability. Bold font indicates the 
maximum values of NP and question Q1-3, indicating the perceived difficulty of edit detection. 

Q1-1 NP 
Q1-3 

yes no mean std 

blurring 206 24 0.1 1.51 0.95 
cartooning 119 115 0.49 2.35 1.31 
colorfilling 201 34 0.14 1.30 0.77 
removal 107 118 0.52 2.45 1.76 
GCR (proposed) 89 135 0.6 3.33 1.80 

Table 5: Results from the logistic regression model of edit detectability (0 = yes, 1 = no). We treated relative size, relative position, 
aspect ratio, and privacy concern level as continuous variables and treated protection methods (i.e., GCR and four reference 
methods) as categorical variables. We set GCR as the reference group for protection methods. Significant factors are in bold. The 
Akaike Information Criterion (AIC) was 1214.43. 

Estimated Coefficients P-Values Odds Ratios (OR) 95% CI for OR 

Intercept 0.450 0.130 1.584 [0.874, 2.869] 
protection methods (blurring) −2.724 < 0.001 0.066 [0.039, 0.110] 
protection methods (cartooning) −0.493 0.014 0.611 [0.413, 0.904] 
protection methods (colorfilling) −2.366 < 0.001 0.094 [0.059, 0.150] 
protection methods (removal) −0.380 0.076 0.698 [0.470, 1.038] 
relative size −4.069 < 0.001 0.017 [0.005, 0.054] 
relative position 1.493 0.006 4.451 [1.550, 12.782] 
aspect ratio −0.088 0.136 0.915 [0.815, 1.028] 
privacy concern level 0.009 0.400 1.009 [0.989, 1.029] 

from that of blurring (𝑈 = 28211.0, corrected 𝑝 = 1.0, 𝛿 = 0.10, 95% 
CI = [0.59, 1.41]). 

We performed linear regression to analyze the influence of each 
parameter space on perceived confidence in retrieving obfuscated 
objects. However, none of relative size, relative position, aspect ratio, 
and privacy concern level was a significant factor, and the overall 
model could not predict this response well (adjusted 𝑅 2 = 0.0008, 
𝐹 (4, 1140) = 0.75, 𝑝 = 0.56). This result suggests that these four 
factors would not offer a clear influence on vulnerability. 

5.4 Perception Evaluation 
5.4.1 Q2-2: Perceived Confidence in Maintaining Narrative Coher-
ence. In terms of enabling human perception to grasp the overall 

narrative of images by retaining category-level information, GCR 
obtained a compatible score of 4.34, which was only surpassed by 
cartooning with a score of 5.38. 

The Kruskal-Wallis test demonstrated that the choice of pro-
tection methods significantly influenced the perceived confidence 
in maintaining narrative coherence of the edit parts for original 
images (𝜒 2 (4) = 212.72, 𝑝 < 0.001, 𝜂 2 = 0.19). Upon conducting 
Mann-Whitney U tests with Bonferroni corrections, we found that 
the responses to each reference method were significantly different 
from those to GCR (between GCR and blurring: (𝑈 = 32,644.0, 
corrected 𝑝 < 0.001, 𝛿 = 0.27, 95% CI = [2.58, 3.42]); between GCR 
and cartooning: (𝑈 = 18,744.5, corrected 𝑝 < 0.001, 𝛿 = -0.28, 95% CI = 
[-1.39,-0.61]); between GCR and colorfilling: (𝑈 = 36,908.5, corrected 
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Table 6: Distribution of answers collected in Stage II. Detailed references to the question descriptions are in Section 4. Bold font 
indicates the maximum or minimum values based on each question’s context. Specifically, lower values are preferable for Q2-1 
(marked as L in the table), indicating decreased vulnerability. Higher scores for Q2-2, Q2-3, and Q2-4 (marked as H in the table) 
are supposed to better preserve narrative coherence, visual harmony, and user satisfaction, respectively. 

Q2-1 (L) Q2-2 (H ) Q2-3 (H ) Q2-4 (H ) 

mean std mean std mean std mean std 

blurring 3.38 2.19 3.23 2.16 2.85 1.81 2.69 1.7 
cartooning 5.38 1.73 5.38 1.91 4.72 1.89 4.12 1.78 
colorfilling 2.82 2.3 2.66 2.22 1.81 1.54 2.0 1.74 
removal 3.04 2.22 2.99 2.16 4.29 2.13 3.94 2.12 
GCR (proposed) 3.79 2.23 4.34 2.23 5.34 1.73 4.98 1.75 

𝑝 < 0.001, 𝛿 = 0.41, 95% CI = [3.56, 4.44]); between GCR and removal: 
(𝑈 = 33,412.5, corrected 𝑝 < 0.001, 𝛿 = 0.33, 95% CI = [2.58, 3.43])). 

Our linear regression model indicated that relative size signif-
icantly predicted the response of perceived confidence in main-
taining narrative coherence (𝑏 = 1.196, 𝑡 (1140) = 2.542, 𝑝 < 0.05). 
The overall model, however, predicted the responses of Q2-2 very 
weakly (adjusted 𝑅 2 = 0.004, 𝐹 (4, 1140) = 2.43, 𝑝 < 0.05). 

5.4.2 Q2-3: Perceived Visual Harmony with Original Images. GCR 
achieved the highest score (5.34) in seamlessly integrating its gen-
erated content with the original image style, ensuring that visual 
harmony remains while protecting privacy. 

Differences in protection methods could significantly influence 
the perception of visual harmony, as our Krustal-Wallis test showed 
(𝜒 2 (4) = 394.22, 𝑝 < 0.001, 𝜂 2 = 0.34). The Mann-Whitney U tests 
with Bonferroni corrections revealed that each reference method 
was significantly different with GCR (between GCR and blurring: 
(𝑈 = 42,540.0, corrected 𝑝 < 0.001, 𝛿 = 0.66, 95% CI = [3.60, 4.40]); 
between GCR and cartooning: (𝑈 = 30,756.0, corrected 𝑝 < 0.01, 
𝛿 = 0.19, 95% CI = [0.66, 1.34]); between GCR and colorfilling: (𝑈 
= 47,737.0, corrected 𝑝 < 0.001, 𝛿 = 0.82, 95% CI = [4.56, 5.44]); 
between GCR and removal: (𝑈 = 32,084.0, corrected 𝑝 < 0.001, 𝛿 
= 0.28, 95% CI = [0.63, 1.37])). Given it had the highest score of 
5.34, we verified that GCR significantly obtained more agreement 
in preserving the visual harmony of the original images compared 
to reference methods. 

Our linear regression model demonstrated that privacy concern 
level significantly predicted the response of perceived visual har-
mony with original images (𝑏 = 0.024, 𝑡 (1140) = 2.507, 𝑝 < 
0.05), indicating people who considered about privacy more would 
believe image protection methods could maintain visual harmony 
better. The overall model also showed a weak prediction capability 
(adjusted 𝑅 2 = 0.04, 𝐹 (4, 1140) = 13.27, 𝑝 < 0.001). 

5.4.3 Q2-4: Perceived Overall Satisfaction on Edited Images. Images 
edited with GCR achieved significantly higher overall satisfaction 
compared to those edited with the four reference methods. This 
was confirmed by a Krustal-Wallis test (𝜒 2 (4) = 302.18, 𝑝 < 0.001, 
𝜂 2 = 0.26), showing at least one protection method was significantly 
different to others. Further, Mann-Whitney U tests with Bonferroni 
corrections confirmed significant differences when comparing GCR 
with each reference method individually (between GCR and blur-
ring: (𝑈 = 41,833.0, corrected 𝑝 < 0.001, 𝛿 = 0.63, 95% CI = [2.62, 

3.38]); between GCR and cartooning: (𝑈 = 33,240.5, corrected 𝑝 < 
0.001, 𝛿 = 0.29, 95% CI = [0.67, 1.33]); between GCR and colorfilling: 
(𝑈 = 45,236.0, corrected 𝑝 < 0.001, 𝛿 = 0.73, 95% CI = [3.58, 4.42]); 
between GCR and removal: (𝑈 = 32,016.0, corrected 𝑝 < 0.001, 𝛿 = 
0.28, 95% CI = [0.63, 1.37])). 

Our linear regression model showed that relative size (𝑏 = −2.960, 
𝑡 (1140) = −7.228, 𝑝 < 0.001) and privacy concern level (𝑏 = 0.026, 
𝑡 (1140) = 2.983, 𝑝 < 0.01) could be a negative influencer and 
a positive influencer to the overall satisfaction of edited images, 
respectively. In addition, the overall model could weakly predict 
these responses (adjusted 𝑅 2 = 0.054, 𝐹 (4, 1140) = 17.44, 𝑝 < 0.001). 

6 DISCUSSION 

6.1 Balancing Privacy Protection, Detectability, 
and Narrative Coherence 

Our study affirmed that approximately 60% of the edits made by 
GCR were undetectable to participants, with the remaining edits 
necessitating a higher degree of scrutiny to be detected. In assessing 
the vulnerability of GCR, we observed that participants’ confidence 
in identifying specific objects within GCR’s edits paralleled the 
confidence levels observed with edits made through blurring, as 
determined by Mann-Whitney U tests (Section 5.3). Although we 
classified blurring as a method with high vulnerability, we utilized a 
high intensity in our implementation, reducing the original content 
to one-thirtieth of its original length (a 900-fold downsampling in 
size). This protection level guarantees that GCR effectively obscures 
many types of content deemed to be privacy-threatening, such as 
humans, documents, and screens, as highlighted in prior studies on 
intensified blurring effects [29]. 

The low edit detectability of GCR offers a promising avenue for 
individuals who wish to keep image alterations subtle, an aspect 
largely overlooked in existing research. If alterations are unno-
ticed, it may reduce the likelihood of malicious entities trying 
to reverse-engineer the edits using advanced image generation 
techniques, such as image upsampling [2]. Furthermore, the risk 
of information leakage through interpersonal connections could 
potentially be reduced [19]. For instance, an individual might share 
a photo from a gathering, opting to blur certain faces to preserve 
their friends’ privacy. However, if someone detects these edits and 
scrutinizes interpersonal relationships on social networking service 
(SNS) platforms, they might decipher the identities of the blurred 
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faces. If they are unable to detect the edits, they might simply move 
on, believing that someone else appears in the photos. Therefore, we 
advocate for a heightened focus on “detectability” when developing 
future image privacy protection strategies. 

The high levels of narrative coherence, visual harmony, and 
overall satisfaction observed with images edited by GCR might 
bolster its use in various image protection scenarios. For instance, in 
the context of photo sharing on SNS platforms, where the perceived 
willingness to share photos has been found to be negatively related 
to the degree of information that is downsampled or obfuscated [67], 
utilizing GCR might appeal to individuals who have previously 
refrained from employing privacy protection due to concerns over 
altering the original visual appearance of images. Furthermore, 
the widespread use of SNS platforms has significantly increased 
the prevalence of owning and sharing images that contain others 
in social groups [25, 42]. GCR could potentially alleviate privacy 
conflicts between those willing to share photos and those prefer-
ring not. For those inclined to share photos, intensive protection 
methods proposed by other stakeholders might be ignored [65]. 
Implementing GCR, which maintains the overall visuals of photos, 
might facilitate a more acceptable balance among individuals from 
various privacy concern groups. Subsequent research might explore 
the applicability of GCR in diverse sharing settings and conduct 
qualitative studies to comprehend user preferences regarding the 
utilization of GCR. 

6.2 Prospective Applications of GCR 
GCR shows promise as a tool for image privacy protection, es-
pecially when images are intended to convey information, but 
without revealing personal or identifiable details. Similar to our pre-
vious discussions on image sharing on SNS platforms, individuals 
may wish to share snapshots capturing unique moments involving 
bystanders. Using GCR allows them to preserve the essence of 
the captured moment without infringing on the privacy of those 
unwittingly included in the picture. GCR can also provide bene-
fits in image-sharing circumstances where contents in the back-
ground may potentially expose privacy-threatening information 
while other information sharing is necessary, such as in workspaces 
and participatory sensing. In such instances, certain content could 
be discreetly replaced to ensure the usability of the resulting image 
and prevent malicious reverting as illustrated in Section 6.1. 

Recent HCI research has explored utilizing real substitutes to 
replace sensitive objects during image data collection [63]. We be-
lieve that employing GCR could make this process more convenient 
and expansive in the future, if its integrated diffusion model can 
generate samples without causing data poisoning that degrades the 
model training process [6]. When tasks require capturing visual 
content from the surrounding environment, it can replace privacy-
threatening content with substitutes to maintain the usability of 
image data without needing specific instructions or physical items 
for participants. This may not only elevate participants’ comfort 
but also augment the volume and diversity of data they’re willing to 
contribute. In the future, it would be intriguing to see researchers 
deploy GCR in crowdsourced data collections and subsequently 
assess the integrity and quality of the sanitized images. 

GCR also holds promise for applications in specific commu-
nities. For example, visually impaired individuals who rely on 
remote assistance often need to capture their surroundings to 
share with helpers [36]. By integrating GCR into these systems, 
privacy-threatening content can be replaced, thus alleviating con-
cerns from bystanders about their privacy being compromised. 
This application of GCR could enhance the independence and 
confidence of visually impaired users in their interactions with 
the environment, while simultaneously respecting the privacy of 
those around them. GCR may also facilitate studies on indigenous 
peoples, allowing researchers to build trust by respecting private 
lives and the secret of their unique cultures while recording intan-
gible cultural property [35]. We expect to leverage interdisciplinary 
collaborations to explore the benefits of deploying GCR across 
various communities. 

6.3 Ethical Considerations 
Ethical implications of image manipulation techniques are timely 
in HCI. In our approach, the substitutes generated by GCR originate 
from random noise, which makes it improbable for them to resemble 
real-world objects. This sets our method apart from harmful imper-
sonation techniques used in Deepfake technologies, as discussed 
in [72]. However, being powered by advanced generative diffusion 
models [57], GCR highlights the potential responsible AI issues 
of diffusion algorithms [12, 14], and meets challenges similar to 
those in AI-driven face synthesis [9]. The implicit prompts within 
GCR could theoretically overlook certain details of the original 
content (Figure 2), leading the diffusion models to unintentional bias 
into the outputs. For instance, GCR could change ethnic features 
when replacing human-related content (e.g., altering skin colors). 
Whether this is an undesired feature in the specific context of 
obfuscating an image can be of course debated. Nevertheless, future 
development of GCR could focus on enhancing its interactivity and 
customization capabilities, affording more control to users over the 
generation process and producing outputs that are both satisfying 
and responsible. 

GCR aims to preserve the original category of the content being 
replaced, therefore minimizing potential misinterpretations of the 
edited photos. However, using textual prompts to regulate content 
generation, it is still possible for GCR to generate visual objects 
that do not belong to the original categories. Future research could 
focus on evaluating the effectiveness of AI transparency strategies 
(e.g., content authenticity detection [22] and ’warning flag’ [38]) to 
prevent misunderstanding during the perception of GCR’s edits in 
the context of image privacy protection. 

Previous studies have also expressed concerns about human 
memory distortion stemming from existing image protection meth-
ods [33]. Given its ability to alter details in real photos, GCR might 
similarly influence people’s recollections of actual events, as sug-
gested by prior psychological research [61, 70]. Therefore, the 
potential for GCR to cause memory distortion should be thoroughly 
examined alongside existing image privacy protection methods. On 
the other hand, GCR could potentially aid individuals in avoiding 
specific phobias by replacing real objects in photos with substitutes 
that do not evoke stress. HCI researchers can deploy GCR in various 
contexts, exploring both its ethical challenges and potential benefits. 
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Finally, it has been argued that humans should have the right to 
represent themselves in the world in a transparent way. There exists 
the question of whether people have the right to take photos of 
people and share them in an obfuscated form, even if the altercations 
were performed in the name of privacy protection [16]. Further re-
search should delve into how photo owners and bystanders perceive 
the disclosure of such edits and how viewers react to AI-altered 
images, exploring e.g. various AI transparency methods in this 
context. 

7 LIMITATIONS 
The distribution of the images used in our data collection might 
cause biases in participants’ perceptions due to uneven exposure 
to different obfuscation methods. Moreover, we did not conduct a 
power analysis before the study to confirm the required sample size 
and each of the images received ratings from only one participant in 
our data collection. This was to obtain the ratings for a broad range 
of images. Collecting multiple responses for each edited image could 
reveal individual variances in how participants perceive edits made 
by GCR. Future research should expand data collection to deepen the 
understanding of user perception of GCR as well as existing image 
protection methods. This would also help to establish a further 
understanding of GCR’s effectiveness and potential weakness. 

In our vulnerability evaluation, we presented the original images 
alongside their edited versions, asking participants to share their 
confidence level in identifying particular visual content. Ideally, 
GCR should exhibit a low vulnerability level, close to methods 
like removal or colorfilling, given that the generated content has 
no relation to the original content. The question used to derive 
this metric was Q2-1 (“To what extent do you agree that you can 
accurately identify the particular original object, by only giving its 
corresponding edit?”). GCR may produce generated similar objects 
to the original objects. Our participants thus might have considered 
that the edited images would convey some information about the 
original objects. 

Future studies should contemplate leveraging techniques such as 
perceptual area detection [78] and image matching algorithms [60] 
to further substantiate the effectiveness of GCR, or engaging expert 
participants to provide a more precise analysis of its vulnerability. 

In our analysis of the results, we employed linear regression to 
determine whether the selected parameter spaces (i.e., relative size, 
relative position, aspect ratio, and privacy concern level) had signif-
icant impacts on participant responses. Despite these parameter 
spaces exhibiting significance in various perceptual metrics, e.g., the 
influence of privacy concern level on perceived overall satisfaction, 
the 𝑅 2 values in these models remained generally very low. This 
suggests that these independent variables did not account for a 
substantial portion of the variation in the responses. We hope that 
future research will be able to identify more influential parameter 
spaces and provide a more accurate assessment of GCR’s usability. 

The subjective nature of privacy protection means that no single 
approach can universally cater to the diverse needs of all demo-
graphic groups. Our participant selection, despite including nine 
countries, lacked significant cultural diversity. Approximately 83% 
of participants were recruited from either the U.K. or the U.S., 
predominantly representing Western culture. Previous research has 

underscored the cultural influence on privacy preferences [5, 15, 47], 
which, in turn, might impact satisfaction levels with image editing 
as our results showed (Section 5.4.3). Therefore, subsequent studies 
should factor in cultural backgrounds to discern if perceptions of 
GCR differ across cultures. 

The images from DIPA [73] were specifically chosen from two 
large-scale datasets, OpenImages [37] and LVIS [27], and annotated 
from a perspective of detecting any potential privacy threats to mit-
igate annotators’ privacy concerns about the leakage of their own 
photos. This raises questions about whether the perceived image 
editing areas in our study can represent the desired editing areas in 
real-life image privacy protection practices, even though we filtered 
out a diverse set of 270 visual content and corresponding images. For 
example, the rating results might be biased since participants only 
encountered random people and objects from the DIPA dataset, 
rather than familiar things from their own lives. Future studies 
should focus more on human-centered taxonomies of privacy-
threatening content from the perspective of online users (e.g., work 
by Li et al. [43]), and conduct in-the-wild experiments to analyze 
how individuals engage with GCR in actual image-capturing and 
-sharing situations. 

The current version of GCR sometimes faces challenges when 
processing complex scenarios, particularly those involving humans 
or textual documents (Figure 5). By incorporating specialized mod-
els, e.g., those tailored for altering human appearances [62] or 
creating visual text [75], we can potentially bolster GCR’s abilities. 
An advanced implementation of GCR would offer a better showcase 
of the cutting-edge capabilities of generative models to participants, 
possibly leading to even more promising experimental outcomes. 
However, as this paper focused on validating the utility of GCR from 
a human-centered perspective, we leave exploring more advanced 
GCR algorithms to future work. 

8 CONCLUSION 
In this paper, we introduced a novel method for image privacy 
protection, named generative content replacement (GCR), and ver-
ified its effectiveness using human-centered approaches. This in-
novative method extracts high-level information about privacy-
threatening content within images and subsequently generates 
authentic content to replace the originals, effectively impeding 
access to privacy-threatening details. We show that GCR excels in 
concealing edit traces (ensuring low detectability) and obfuscates 
particular privacy-threatening content to be identified as effec-
tively as a 30x downsampling blurring method. Furthermore, our 
participants believed edits processed by GCR maintained narrative 
coherence and visual harmony of original images, and expressed 
high overall satisfaction with these edits. As image capturing and 
sharing become increasingly pervasive in our daily lives, we believe 
that GCR will inspire researchers on future innovations in image 
protection methodologies. Moreover, we expect human-centered 
investigations for a better understanding of the future establishment 
of supportive interfaces to enable the general usage of GCR. 
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