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The richness of the information in photos can often threaten privacy, thus image editing methods are often employed for privacy
protection. Existing image privacy protection techniques, like blurring, often struggle to maintain the balance between robust
privacy protection and preserving image usability. To address this, we introduce a generative content replacement (GCR) method
in image privacy protection, which seamlessly substitutes privacy-threatening contents with similar and realistic substitutes, using
state-of-the-art generative techniques. Compared with four prevalent image protection methods, GCR consistently exhibited low
detectability, making the detection of edits remarkably challenging. GCR also performed reasonably well in hindering the identification
of specific content and managed to sustain the image’s narrative and visual harmony. This research serves as a pilot study and
encourages further innovation on GCR and the development of tools that enable human-in-the-loop image privacy protection using
approaches similar to GCR.
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1 INTRODUCTION

Images form the foundation of technology-supported communication, including online social networks [11], daily-life
recording [13], and information exchanges at workplaces [68]. Meanwhile, privacy issues stemming from the pervasive
image capturing and sharing culture online are highlighted and studied in the field of human-computer interaction
(HCI) [41] and machine learning (ML) [46, 53, 80]. Image obfuscation is thus critical as one of the direct approaches to
privacy protection. Obfuscation techniques help block potentially malicious detection of privacy-threatening visual
information [41]. They also present a unique challenge: as obfuscation intensifies, both the usefulness of images and
the willingness to share content diminish [29, 30, 44, 67]. To achieve a better balance of protection and utility of
images, existing research has investigated various alternative obfuscation methods, including style transformations [24],
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Fig. 1. Examples of images processed by our proposed method of generative content replacement (GCR). In the provided images,
the highlighted contents were annotated as privacy-threatening in an image privacy dataset called DIPA [73]. GCR removed these
segments and introduced similar substitutes to replace them. This strategy ensures protection against revealing identifiable information
but allows for the overall narrative to be communicated through shared images.

sticker overlays [40], avatars [44], and cartoon substitutes [31]. However, as these methods introduce artificial visual
components, resultant images may cause unnaturalness and may diminish viewers’ experience.

Generative artificial intelligence (AI) can generate realistic images with various prompts [20, 52, 59] and enable
various image editing applications [4]. We envision that generative AI can offer novel image obfuscation methods
with unique value in image privacy protection, through seamless replacement of visual content in images. Computer
vision research has already explored the technical development of such approaches for human faces [17, 62] and vehicle
plates [76]. A deep understanding of how obfuscation by such technology could impact user perception and experience
would benefit future interactive system and interface designs using generative AI for image privacy protection.

In this paper, we explore the feasibility of image-generative AI in obfuscating multiple different types of privacy-
threatening content. This includes an examination of user perceptions and experiences against other commonly employed
methods. Our method, Generative Content Replacement (GCR), leverages state-of-the-art image captioning [39] and
generative diffusion AI [57] (Figure 1). GCR is not constrained by the types of objects to be obfuscated, providing a
capability to enable image obfuscation in realistic, practical settings.

Specifically, this work offers the following three contributions to the field of HCI and machine learning:

• Development of GCR, using a state-of-the-art image captioning method [39] and generative diffusion AI [57].
• An experiment using generative content replacement (GCR) with 270 images covering 23 privacy-threatening
categories against four common protection methods, to encompass a plethora of realistic image editing scenarios
for privacy protection.

• Data analysis results that validate the advantages of GCR over existing common image protection methods.

We found that our participants were not able to detect edits by GCR for protection in 60% of the images tested,
confirming high visual integration of GCR. The results also show that GCR maintained the story of the original images
and demonstrated higher visual harmony in the edited images than blurring, colorfilling, and removal. These findings
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can inspire researchers to design interfaces incorporating GCR for image privacy protection and encourage machine
learning (ML) experts to develop algorithms tailored for GCR.

2 RELATEDWORK

Image privacy protection is a topic of significant interest in both the HCI and ML communities. Recent literature
reviews have consolidated various methods of image privacy protection concerning human vision [1, 46], computer
vision [28, 45], and both domains [80]. Here, we present related work on image protection methods and associated
perceptual experiments from an HCI perspective. In addition, Section 2.3 briefly introduces generative models in visual
content generation, explaining our proposition that GCR could be a novel method for image privacy protection, effective
against both human vision and computer vision.

2.1 Image Protection Methods

Our primary focus is investigating the usability of GCR through human-centered approaches. Therefore, techniques
tailored to thwarting malicious computer-vision detection, such as image perturbation [10], are not part of our discussion.
Similarly, non-edit image protection approaches, like access control [49], are excluded due to our specific emphasis on
direct image data protection.

Commonly employed filtering methods such as mosaics have been leveraged to prevent privacy breaches by photo
owners [69], co-owners [64], and bystanders [7, 21, 55]. However, heavy implementation of these methods often
results in a significant decline in both usability and sharing inclination of images [67], thus limiting their applicability.
Alternatives that employ transformation effects such as aging [51] and style transformation [30] were proposed to offer
better visual aesthetics for edited images. However, advancements in adversarial methods like upsampling [2] and
reverse generation [81] can potentially revert transformed images to their original state, weakening the purpose of
privacy protection.

A more robust approach involves the direct removal of privacy-threatening contents in images, termed image

inpainting or removal [8]. While this eliminates the appearance of privacy-threatening content, it might lead to potential
misinterpretations and unnatural feelings because of information loss [53]. Researchers have attempted to address
this by introducing non-privacy-threatening substitutes like stickers [40], avatars [44], and cartoon replacements [31].
Although they fulfill their intended purpose, their practicality remains constrained. For instance, methods that depend
on pre-existing material libraries for sticker or cartoon replacements might become ineffective if suitable matches are
not found. Furthermore, these substitutions often exhibit a visual disconnect from the rest of the image due to their
distinct styles. While some people might appreciate stylistic alterations in images, such modifications might be less
preferred when individuals seek to share photos retaining their original aesthetic. We, therefore, argue that an image
content replacement method using realistic substitutes can be more effective in ubiquitous scenarios of image privacy
protection.

2.2 Perception of Image Protection Methods

HCI research has deeply investigated how people perceive image protection techniques. One pivotal finding was the
negative correlation between the sharing intentions of images and the intensity of their protection, through applying
mosaics of varying intensities on the same set of images [67].

In subsequent studies, researchers further explored the visual perception of images edited using diverse methods.
Hasan et al. conducted a thorough examination of five prevalent image protection strategies: Blurring, Silhouette, Pixel,
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Masking, and Edging [29]. By using 100 images across 20 unique scenarios, they introduced four metrics to assess
the trade-off between privacy and utility for each method, providing a comprehensive understanding of how each
technique performed in various scenarios. Building on this, Hasan et al. studied if style transformation outside of the
edited areas could increase the aesthetic of images, though their findings didn’t indicate a significant boost in viewers’
satisfaction [30].

Li et al.’s comparative analysis examined the influence on the identification of 14 specific individuals using eight
different protection methods [44]. Their results emphasized inpainting and avatar as techniques that best balanced
between avoiding privacy leakages and maintaining viewer perception.

Zhao et al. recently characterized the dimensions of human vision adversary protection into two primary categories:
imperceptibility and perceptibility [80]. Imperceptibility, in particular, is a critical metric in image protection and
evaluates the degree to which the edits are seamlessly integrated into images, serving as an indicator of the “naturalness”
of a protection approach. Following these foundational studies, our research adopts their methodologies, selecting
representative image protection techniques for comparison with GCR in a two-stage experiment for evaluating GCR’s
feasibility in various aspects of human perception.

2.3 Generative Models of Images

In this section, we introduce mainstream generative models, including the generative adversarial network (GAN) and
diffusion models, and then introduce their applications and argue their potential in privacy protection.

GAN was one of the most common generative model algorithms [26]. In general, GANs are finetuned by training two
neural networks concurrently. The generator network, G, produces synthetic content, while the discriminator network,
D, evaluates the authenticity of that content against ground-truth data. The generator’s goal is to continually improve its
content generation until the discriminator can no longer reliably discern between the synthetic and real data. In privacy
protection, researchers leveraged the potential of GANs to replace identifiable details with generated content. Recent
advancements have exploited the capability to modify the latent space within GANs, leading to nuanced alterations in
the generated outputs, therefore preventing privacy-threatening details from being identified. Examples include subtle
changes in facial features [62], adding makeup effects [32], and the transformation of identifiable components such as
vehicle plates in privacy-threatening images [76].

Diffusion models, on the other hand, can create visual content through a structured denoising procedure. Unlike
traditional image generation, which starts from scratch, diffusion models initiate with a noisy version of the target
image and iteratively refine it to achieve the desired output [57, 58]. These models are typically initialized based on
prompts, which can range from textual descriptions to visual cues such as image contours [77]. Recent advancements
in interactive applications of diffusion models enable people to specify the desired content to replace marked areas in
target images, ensuring a coherent blend with the rest of the image [52, 79].

Images generated by diffusion models have been demonstrated to be highly realistic, closely resembling photographs
taken in the real world [50]. Given the capabilities of diffusion models, we posit that these interactive generative
techniques hold great promise for boosting privacy protection in ubiquitous scenarios. When detecting privacy-
threatening content, users could seamlessly replace it with realistic generative content that retains the image’s narrative
coherence, and original style as well as blocks any potential malicious observation or detection. This work investigated
how GCR works in ubiquitous scenarios of image privacy protection, scrutinizing the effectiveness of state-of-the-art
diffusion model-generated visual content in protecting image privacy from a human-centered perspective.
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3 STUDY DESIGN

3.1 ResearchQuestions

To frame our research, we first define Generative Content Replacement (GCR) as “an image privacy protection method
employing generated visual substitutes to replace content in images that may compromise privacy”. To examine the
user perception and experience of GCR, we frame our investigation around three research questions:

• RQ1. To what extent can viewers detect the edits with GCR (detectability)?
• RQ2. To what extent can viewers identify original content from images edited with GCR (vulnerability)?
• RQ3. How well do images processed by GCR perform using common evaluation metrics derived from related
image protection research?

One of the main objectives of our study is human vision adversary protection, as discussed by Zhao et al. [80],
who identify the ability of humans to detect image manipulation as a key evaluation metric across modern image
protection methods. In our study, we evaluate this as detectability, and, additionally, evaluate the related cognitive
effort of detecting the edit. We also study the vulnerability of image protection methods, referring to the degree to
which people are able to identify original contents covered or replaced with image protection methods. Prior to gauging
vulnerability, the participants were informed that the image being observed was edited. This ensures that vulnerability
measurements are not biased towards just the participants who correctly recognized an image being edited.

Finally, we include the following evaluation metrics in the study to emphasize human factors of using GCR:

• Narrative coherence, inspired by work by Hasan et al. [29, 30], which emphasizes the importance of retaining
sufficient information from the original image. Similarly, in this work, we define the preservation of information
sufficiency as narrative coherence that measures how well the original story is preserved in edited images. As
such, it is a natural choice in assessing image privacy protection methods in contexts where people e.g. wish to
share images online to share an experience but hide specific aspects from the images.

• Visual harmony, is likewise inspired by Hasan et al. [29] who discuss how disruptive changes to the visual or
aesthetic appeal of the image deteriorate the user experience of image protection methods.

• User satisfaction, discussed in this context by Li et al. [44] and Hasan et al. [29], and directly indicative of people’s
willingness to share photos online [18].

3.2 Generative Content Replacement

Figure 2 illustrates the workflow of our GCR method implemented for this study. It leverages textual prompts to produce
visual substitutes that match the type of the original content. When there exists visual content within an image that
threatens privacy, GCR utilizes BLIP-2 [39], a state-of-the-art image captioning model, to automatically produce two
textual descriptions: 𝑇𝐶 for the specific privacy-threatening content and 𝑇𝐼 for the entire image. Merging the two
descriptions yields a cohesive prompt, framed as “𝑇𝐶 within the context of 𝑇𝐼 ”. Subsequently, the image stripped of its
privacy-threatening content is combined with this prompt and processed using the stable diffusion v2.1 model [57]. This
model performs a 50-iteration denoising cycle with DPM-Solver++ [48] as the sampling solver, eventually producing
an image that integrates generative substitutes seamlessly into the removed area. We directly used the bounding box
annotations available in an image privacy dataset called DIPA [74] (detailed in Section 3.4) to inform our system of
where the edit should be placed. While further improving this GCR method may be possible (e.g., employing models and
algorithms specifically designed for this purpose or exploring more appropriate prompts), our present work focuses on
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Fig. 2. The proposed workflow of generative content replacement (GCR) method. Utilizing an image input, our GCR method employs
the BLIP-2 model [39] to formulate two distinct prompts: prompt 𝑇𝐼 that encapsulates the entire image description, and prompt
𝑇𝐶 which focuses on the specific privacy-threatening content, as identified in DIPA [74]. Following this, GCR incorporates the
original image, the mask obtained from DIPA, and a prompt articulated as "𝑇𝐶 within the context of 𝑇𝐼 ", into the stable diffusion
v2.1 model [57]. This produces an output (here, highlighted by a red bounding box) where the privacy-infringing content has been
seamlessly substituted with similar generated counterparts.

Table 1. Comparison of the four image privacy protection methods in terms of their detectability and vulnerability. A lower level of
detectability suggests that human vision (HV) is less likely to detect any edits, while higher vulnerability means that upon being
informed of edits, individuals can more easily identify the original content from edits.

High Vulnerability Low Vulnerability

High Detectability Blurring Colorfilling

Low Detectability Cartooning Removal

understanding user perceptions of GCR implemented with the latest machine learning models available as of summer
in 2023. The rightmost column in Figure 3 shows example images with GCR.

3.3 Reference Image Privacy Protection Methods

While there exist numerous editing methods for image privacy protection, previous research did not show strong
differences in human perception among blurring and pixelation [29], as well as among various style transformations [30].
To simplify our experimental designs, we selected four representative methods, each occupying a distinct space in
terms of detectability and vulnerability, summarised in Table 1. The four columns besides the leftmost in Figure 3, show
example images with these approaches.

• Blurring. Our blurring method entails copying pixels from an image downsampled by a factor of 30x to the
original, thereby emphasizing its role in privacy protection. As the blurring approach essentially presents a
reduced-resolution version of the original content, we posited that it possesses high detectability and high
vulnerability.
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Fig. 3. Sample images from our selection. Each image was processed by GCR as well as the other four reference methods. The edited
image regions are highlighted with red bounding boxes.

• Cartooning. We decided to leverage a GAN-based model to perform direct cartoonization for realizing arbitrary
privacy-threatening content protection [71]. It serves to obfuscate details, such as eyes in a face or text in a
document, to prevent potential privacy leakages. As cartoonization is not as striking as blurring or colorfilling
and maintains some information about the original content (e.g., shapes, sizes, and colors), we consider this
cartooning transformation an image privacy protection approach with low detectability and high vulnerability.

• Colorfilling.We adopted a color-filling approach where each position within the edited areas is assigned a random
pixel color. Although the term encryption has been used in prior work to describe similar methods [55], our
implementation does not involve actual information encryption, but rather randomly changes the color value of
each pixel. Given its pronounced visual effect, which entirely obfuscates the information in the edited regions,
we consider that the colorfilling is an approach that exhibits high detectability and low vulnerability.

• Removal. While diffusion models can remove visual content [57], they may introduce unrelated foreground
elements rather than seamlessly blending the stripped parts of images with their adjacent backgrounds. Therefore,
we leveraged the best pretrained LAMA image inpainting model [66] to obliterate privacy-threatening content
while extending adjacent portions of the image stably. We consider that the removal technique is a method with
low detectability and low vulnerability in both object-level and category-level identification.
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3.4 Image Selection and Processing

Our objective was to deliver a comprehensive examination of GCR with reference methods. We chose DIPA [74], an
image privacy dataset comprising 5,897 content-level annotations across 1,304 images highlighting privacy-threatening
content, as our data source. DIPA provides annotations of multiple objects and categories of content in each image if they
exist. In our study, however, we used the DIPA images to obfuscate only one category of privacy-threatening content
(e.g., person, place identifier) per image. Thus, the privacy-threatening content in each image in the study could consist
of multiple objects, each encapsulated within a bounding box, but all within the same category. We then classified the
data based on three parameter spaces to adequately represent and diversify the types of privacy-threatening content.

• Relative Size. This represents the proportion of the content (as defined by its bounding box) to the image’s overall
size. For annotated content containing multiple bounding boxes, we summed the sizes altogether. We filtered out
content that was either too small (<0.005) or too large (>0.7) relative to the entire image size. The remaining
images were divided into three categories: small (lowest 30%), medium (middle 40%), and large (highest 30%)
based on their relative sizes.

• Relative Position. This parameter space represents where the privacy-threatening content is located in the image.
We computed the distance between the center of the bounding box and the image’s center, divided by the
image’s diagonal. For multi-object contents, we took an average number of all results of relative positions. The
processed data was then divided into three segments: near, mid-range, and far from the image center with the
same 30%-40%-30% split as the relative sizes.

• Aspect Ratio. This parameter space represents the ratio of an object’s width to its height. We calculated an average
number of all aspect ratio values for multiple objects in one image. We also devised three categories of vertical,
balanced, and horizontal, and the same 30%-40%-30% split was applied.

Our selection included 270 unique images so that they were uniformly distributed across the three parameters
discussed above. While satisfying the above conditions, we ensured that the images we selected, to the extent feasible,
evenly encompassed the 23 privacy-threatening categories identified inDIPA rather thanmaintained the same occurrence
distribution of these categories. Our data balancing, however, did not consider the factor of higher-level descriptions of
each category (Section 4.2) because annotations in some DIPA images exhibited high divergence.

Figure 4 and Table 2 detail the distributions of bounding boxes and distributions of privacy-threatening content
categories, respectively. Each image was processed with GCR and the four reference methods explained in Section 3.3,
resulting in five images with obfuscation for each original image (1,350 processed images in total). While this selection
might not mirror the exact occurrence of privacy-threatening content in real-world photos, it was designed to ensure
sample balance and consider different obfuscation scenarios.

4 USER STUDY

We conducted a two-stage experiment to benchmark GCR and investigate the research questions presented earlier. The
procedure was approved by the institutional review board at the first author’s institution.

4.1 Participant Recruitment

We recruited participants through Prolific [56], a reliable crowdsourcing platform that proved to offer high-quality
responses from participants [23]. The inclusion criteria of participants were native-level English proficiency; primary
usage of English in daily life; being 18 or older; and a willingness to view photographs.
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Fig. 4. The distribution of bounding boxes on 270 privacy-threatening content selected from DIPA [74] in our study. Each circle
symbolizes visual content to be processed in one image and is positioned relative to the image’s center. The circle’s diameter reflects
the relative size of the bounding box within its respective image, though it is presented in a scaled manner to prevent visual clutter.
The color variation indicates the aspect ratio of the bounding boxes, derived from their width-to-height ratio.

4.2 Pre-experimental Stage

At the beginning of the experiment, we explained the overview of the tasks and expected workload to the participants.
The participants could first preview sample images from DIPA [73] to help them decide whether to proceed with viewing
similar images during the study. As a safety measure, we informed participants that they were allowed to withdraw from
the study at any time and for any reason. After their consent to participate, we asked them how carefully they would
consider the potential of leaking five different types of privacy information (personal information, location of shooting,
individual preferences/pastimes, social circle, and others’ private/confidential information) derived from higher-level
descriptions of different privacy-threatening types in DIPA (e.g., vehicle plate may indicate personal information and
location of shooting) [73]. In other words, the five types assessed in the PreQ encompass the 23 distinct categories
outlined in Table 2. Through this approach, we gauged the level of participants’ concerns regarding privacy-threatening
information while keeping the task workload low.

• PreQ. How carefully do you consider the potential of leaking <each of the five privacy information types, one at
a time> when you are sharing photos?
Response: [1: not at all carefully] – 2 – 3 – [4: neutral] – 5 – 6 – [7: extremely carefully]

4.3 Stage I - Assessing Detectability

After the pre-experimental questionnaire, participants were asked to perform tasks associated with edit detectability of
given images to answerRQ1. 10 randomly-selected images from our 1,350 edited images were shown to each participant.
If they identified edits, we further required them to locate the edited region by clicking in the given images, and rate the
difficulty of detecting the corresponding edit. We note that participants were not informed whether the given images
contained any edits, to avoid potentially biasing their responses. The specific questions were listed as follows:
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Table 2. The distribution of selected privacy-threatening content in our research according to 23 privacy-threatening categories
identified by DIPA [74], also presented by three parameter spaces we defined in Section 3.4. All divisions were 30%-40%-30% split.
We selected 10 images for each combination of factors: relative size, relative position, and aspect ratio. This resulted in a total of 270
images, with each split interval of every parameter space comprising 90 images, as depicted in the last row.

Category Relative Size Relative Position Aspect Ratio All
small medium large near mid-range far vertical balanced horizontal

Accessory 7 6 1 5 5 4 4 4 6 14
Book 5 4 6 5 6 4 4 5 6 15
Cigarette 2 0 0 1 1 0 0 1 1 2
Clothing 5 4 5 4 4 6 5 4 5 14
Cosmetics 0 1 4 2 2 1 3 1 1 5
Electronic Device 2 2 1 1 2 2 2 1 2 5
Finger 2 1 4 1 3 3 1 5 1 7
Food 2 5 2 2 4 3 3 2 4 9
Home Interior 5 4 5 4 5 5 6 4 4 14
Identity 3 5 5 5 4 4 1 8 4 13
Machine 4 2 2 2 5 1 3 2 3 8
Musical Instrument 3 6 5 5 6 3 6 5 3 14
Person 6 4 5 5 4 6 8 5 2 15
Pet 3 7 5 7 3 5 5 6 4 15
Photo 2 2 2 4 1 1 0 5 1 6
Place Identifier 6 4 5 5 4 6 8 4 3 15
Printed Material 5 4 5 3 5 6 4 5 5 14
Scenery 4 5 5 6 3 5 6 2 6 14
Screen 5 4 5 5 5 4 3 7 4 14
Table 5 4 4 4 5 4 1 3 9 13
Toy 4 6 4 5 4 5 5 4 5 14
Vehicle Plate 5 5 5 3 6 6 5 3 7 15
Others 5 5 5 6 3 6 7 4 4 15

Sum of The All 90 90 90 90 90 90 90 90 90 270

• Q1-1: Edit Detectability. Do you believe the photo has been digitally edited (i.e., has some visual information
been changed from the original version taken in real life)?
Response: yes / no
If the response to Q1-1 was yes, participants were presented with the subsequent questions.

• Q1-2. Please click on the part of the photo where you believe the editing has been applied.
• Q1-3: Perceived Difficulty of Edit Detection. How difficult or easy is it to detect that the photo has been
edited? Rate on a scale of 1-7.
Response: [1: extremely easy]– 2 – 3 – [4: neutral] – 5 – 6 – [7: extremely difficult]

In one randomly chosen image of the 10 images processed by each participant, we also added an additional question
item as an integrity check that instructed the participant to choose the option strongly agree:

• Integrity Check. For this question, please select the option "strongly agree".
Response: [1: strongly disagree] – [2: disagree] – [3: neutral] – [4: agree] – [5: strongly agree]

In the subsequent analysis, we ignored data from participants who failed the integrity check.
10
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Table 3. Demographic information of our participants.The “Others” in employment status includes “not in paid work”, “start a new
job within the next month”, and “data expired”.

Age Student or Not Employment All
18–24 25–34 35–44 45–54 55– Yes No Data Expired Full-Time Part-Time Unemployment Others

Male 7 22 33 12 6 17 58 5 51 6 10 13 80
Female 7 14 6 9 5 6 33 2 22 8 2 9 41
All 14 36 39 21 11 23 91 7 73 14 12 22 121

4.4 Stage II - Assessing Vulnerability And other Perception Evaluation

After participants finished all the tasks in the first stage, we disclosed that all these images had been edited and asked
them to respond to additional questions to answer RQ2 and RQ3. We juxtaposed each of the edited images assigned in
Stage I and its original image with the location of the edit highlighted in a red bounding box. A toggle button next to
each image set allowed participants to view only the region where the edit was employed. We did not reveal the name
of the obfuscation method to participants at this stage to avoid potential biases (e.g., GCR may create an impression
that it is a novel approach). We asked the following questions for each image set:

• Q2-1: Edit vulnerability. To what extent do you agree that you can accurately identify the particular original
object, by only giving its corresponding edit?

• Q2-2: Perceived Confidence in Maintaining Narrative Coherence. To what extent do you agree that you
can recognize the object in the edited image as (a/an) category name of the content, despite not being the same
one as the original one?

• Q2-3: Perceived Visual Harmony with Original Images. To what extent do you agree that the edited content
visually blends with the rest of the image, maintaining the visual harmony as well as the original object did?
Response for Q2-1, Q2-2 and Q2-3: [1: strongly disagree] – 2 – 3 – [4: neutral] – 5 – 6 – [7: strongly agree]

• Q2-4: Perceived Overall Satisfaction on Edited Images. To what extent do you find the photo with the edit
satisfying?
Response: 1: [extremely unsatisfying] – 2 – 3 – [4: neutral] – 5 – 6 – [7: extremely satisfying]

• Q2-5. Please click on the corresponding part of the original image that matches the object edited in the given
edited image.

The category name in Q2-2 was derived from DIPA’s annotations according to 23 identified categories of privacy-
threatening content (Table 2). For Q2-3, while Hasan et al. used the phrase “This photo looks visually appealing” to
understand the aesthetic impact of edits [29, 30], we believe that aesthetic perceptions can be deeply subjective.
Therefore, we chose “visual harmony” as a more objective measurement that focuses on the preservation of the image’s
original style. To ensure that participants understood where exactly the edit occurred in each of the given images, we
included Q2-5. In addition, we incorporated a similar integrity check in this stage for another randomly chosen image
as in stage I.

5 RESULTS

5.1 Participants

We recruited a total of 135 participants. 14 participants did not pass our integrity check, leaving us with 121 valid
participants. The demographic distribution based on gender, age, student status, and employment status is detailed in
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Table 4. Distribution of answers collected in Stage I. Detailed references to the question descriptions are in Section 4. The term NP
refers to the percentage of participants who failed to recognize edits, assessing detectability. Bold font indicates the maximum values
of NP and question Q1-3, indicating the perceived difficulty of edit detection.

Q1-1 NP Q1-3

yes no mean std

blurring 206 24 0.1 1.51 0.95
cartooning 119 115 0.49 2.35 1.31
colorfilling 201 34 0.14 1.30 0.77
removal 107 118 0.52 2.45 1.76
GCR (proposed) 89 135 0.6 3.33 1.80

Table 3. The “Others” employment status includes participants who were “not in paid work”, “start a new job within
the next month”, and cases where the data had expired in Prolific. For their ethnicity, 92 (76.0%) participants were
white, 15 (12.4%) were Black, 7 (5.8%) were Asian, 6 (5.0%) were mixed and 1 claimed as others (0.8%). They came from
9 different countries: United Kingdom (84 participants), United States (17), South Africa (7), Nigeria (4), Ireland (3),
Canada (2), Zimbabwe (2), India (1), and New Zealand (1). The average time taken by participants from starting the task
to its completion was 21.6 minutes. Every participant was compensated £3 upon task completion, regardless of their
performance in the integrity check.

5.2 Edit Detectability Evaluation

Table 4 presents our experimental results for Edit Detectability and Perceived Difficulty of Edit Detection of all valid
responses. In addition to reviewing answers for the sanity check questions, we analyzed if participants accurately
identified the edited regions by examining the responses for Q1-2 and Q2-5. We detected 48 occurrences in Stage I and
14 in Stage II where participants’ clicks were outside the bounding boxes in DIPA [73] even with a 10% error tolerance.
We excluded responses for images associated with these inaccurate clicks as we regarded that participants were not
able to identify the locations of edits precisely or misunderstood. This removal resulted in 1,148 sets of valid responses.

5.2.1 Q1-1: Edit Detectability. The columns under Q1-1 and NP in Table 4 show the number of responses and the ratio
of how frequently participants responded negatively (i.e., they did not find any edits), respectively. GCR exhibited the
lowest edit detectability rate. The results revealed that, without explicit pointers, 60% of the edits processed through
GCR escaped recognition by participants. We conducted a logistic regression analysis to determine whether participants
could detect edits (0 = yes, 1 = no). We summed the responses to the five questions of PreQ per participant as their
privacy concern level, inspired by previous studies [3, 54]. Our independent variables included protection methods (i.e.,
GCR and four reference methods), relative size, relative position, aspect ratio, and privacy concern level. Protection methods

was treated as a categorical variable, and GCR was set as the reference group. Other variables were treated as continuous
variables. We weighted the data according to the proportion of yes and no responses to avoid biases toward the majority
class.

Table 5 details the coefficients, p-values of coefficients, odds ratio, and 95% confidence interval of odds ratio (95%
CI) of each independent variable resulting from the logistic regression model. We observe that all reference methods
except removal were statistically significant negative predictors, indicating that it was more likely to detect the edits by
blurring, cartooning, and colorfilling. When relative size of edit areas became larger, participants were inclined to detect
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Table 5. Results from the logistic regression model of edit detectability (0 = yes, 1 = no). We treated relative size, relative position,
aspect ratio, and privacy concern level as continuous variables and treated protection methods (i.e., GCR and four reference methods) as
categorical variables. We set GCR as the reference group for protection methods. Significant factors are in bold. The Akaike Information
Criterion (AIC) was 1214.43.

Estimated Coefficients P-Values Odds Ratios (OR) 95% CI for OR

Intercept 0.450 0.130 1.584 [0.874, 2.869]
protection methods (blurring) −2.724 < 0.001 0.066 [0.039, 0.110]
protection methods (cartooning) −0.493 0.014 0.611 [0.413, 0.904]
protection methods (colorfilling) −2.366 < 0.001 0.094 [0.059, 0.150]
protection methods (removal) −0.380 0.076 0.698 [0.470, 1.038]
relative size −4.069 < 0.001 0.017 [0.005, 0.054]
relative position 1.493 0.006 4.451 [1.550, 12.782]
aspect ratio −0.088 0.136 0.915 [0.815, 1.028]
privacy concern level 0.009 0.400 1.009 [0.989, 1.029]

more edits. In addition, if the edit was increasingly far from the image center, our participants tended to detect fewer
edits.

5.2.2 Q1-3: Perceived Difficulty of Edit Detection. GCR obtained the highest score of 3.33 in perceived difficulties of
detecting edits. We conducted a Kruskal-Wallis test first, a method for analyzing non-normally distributed ordinal
data [34], to investigate whether different protection methods influenced the perceived difficulty of identifying edits.
The test confirmed a significant difference in the methods (𝜒2 (4) = 166.45, 𝑝 < 0.001, 𝜂2 = 0.23). We then employed the
Mann-Whitney U test, a robust non-parametric analysis for ordinal data between two independent groups [82]. This
allowed us to closely examine the pairwise mean differences between GCR and each reference method, highlighting the
distinctiveness of GCR. Bonferroni correction was further implemented to account for the multiple comparisons and
adjust the p-values accordingly. We also used Cliff’s Delta (𝛿) as a measure of effect size to quantify the magnitude of
differences between GCR and other protection methods. Additionally, we reported the confidence intervals (95% CI)
for the median difference in Mann-Whitney U tests. The Mann-Whitney U tests with each reference method revealed
that GCR edits were more challenging to spot than those made by other methods (between GCR and blurring: (𝑈 =
15,150.0, corrected 𝑝 < 0.001, 𝛿 = 0.58, 95% CI = [1.63, 2.37]); between GCR and cartooning: (𝑈 = 7,735.5, corrected 𝑝 <
0.01, 𝛿 = 0.31, 95% CI = [0.57, 1.43]); between GCR and colorfilling: (𝑈 = 15,436.0, corrected 𝑝 < 0.001, 𝛿 = 0.65, 95% CI =
[1.63, 2.37]); between GCR and removal: (𝑈 = 6,530.5, corrected 𝑝 < 0.01, 𝛿 = 0.29, 95% CI = [0.50, 1.50])). These analyses
confirmed that GCR was the most difficult method to recognize in our study.

We constructed a linear regression model to examine how other independent variables, including relative size, relative
position, aspect ratio, and privacy concern level, influence the responses of this question. Our linear regression model
showed that only relative size significantly predicted the perceived difficulty of edit detection (𝑏 = -1.499, 𝑡 (731) = -4.490,
𝑝 < 0.001), indicating larger edits were more easily to detect. We acknowledge that the model doesn’t offer strong
predictive power for the response but presents it due to its statistical significance (adjusted 𝑅2 = 0.025, 𝐹 (4, 731) = 5.806,
𝑝 < 0.001).
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Table 6. Distribution of answers collected in Stage II. Detailed references to the question descriptions are in Section 4. Bold font
indicates the maximum or minimum values based on each question’s context. Specifically, lower values are preferable for Q2-1
(marked as L in the table), indicating decreased vulnerability. Higher scores for Q2-2, Q2-3, and Q2-4 (marked as H in the table) are
supposed to better preserve narrative coherence, visual harmony, and user satisfaction, respectively.

Q2-1 (L) Q2-2 (H ) Q2-3 (H ) Q2-4 (H )

mean std mean std mean std mean std

blurring 3.38 2.19 3.23 2.16 2.85 1.81 2.69 1.7
cartooning 5.38 1.73 5.38 1.91 4.72 1.89 4.12 1.78
colorfilling 2.82 2.3 2.66 2.22 1.81 1.54 2.0 1.74
removal 3.04 2.22 2.99 2.16 4.29 2.13 3.94 2.12
GCR (proposed) 3.79 2.23 4.34 2.23 5.34 1.73 4.98 1.75

5.3 Vulnerabilities Evaluation

In evaluating participants’ ability to identify original content based solely on the edited image, the colorfilling method
was the most effective in obscuring identification, with an average rating of 2.82. The average rating for GCR was 3.79.

Through a Kruskal-Wallis test, we confirmed that protection methods affected the perceived vulnerability (𝜒2 (4) =
176.19, 𝑝 < 0.001, 𝜂2 = 0.15). More specifically, Mann-Whitney U tests with Bonferroni corrections revealed significant
differences between GCR and reference methods except blurring (between GCR and cartooning: (𝑈 = 15,469.5, corrected
𝑝 < 0.001, 𝛿 = -0.40, 95% CI = [-2.39, -1.61]); between GCR and colorfilling: (𝑈 = 33,131.0, corrected 𝑝 < 0.001, 𝛿 = 0.26,
95% CI = [2.58, 3.43]); between GCR and removal: (𝑈 = 29,989.0, corrected 𝑝 < 0.01, 𝛿 = 0.20, 95% CI = [1.58, 2.42])). The
perceived vulnerability of GCR was not significantly different from that of blurring (𝑈 = 28211.0, corrected 𝑝 = 1.0, 𝛿 =
0.10, 95% CI = [0.59, 1.41]).

We performed linear regression to analyze the influence of each parameter space on perceived confidence in retrieving
obfuscated objects. However, none of relative size, relative position, aspect ratio, and privacy concern level was a significant
factor, and the overall model could not predict this response well (adjusted 𝑅2 = 0.0008, 𝐹 (4, 1140) = 0.75, 𝑝 = 0.56). This
result suggests that these four factors would not offer a clear influence on vulnerability.

5.4 Perception Evaluation

5.4.1 Q2-2: Perceived Confidence in Maintaining Narrative Coherence. In terms of enabling human perception to grasp
the overall narrative of images by retaining category-level information, GCR obtained a compatible score of 4.34, which
was only surpassed by cartooning with a score of 5.38.

The Kruskal-Wallis test demonstrated that the choice of protection methods significantly influenced the perceived
confidence in maintaining narrative coherence of the edit parts for original images (𝜒2 (4) = 212.72, 𝑝 < 0.001, 𝜂2 = 0.19).
Upon conducting Mann-Whitney U tests with Bonferroni corrections, we found that the responses to each reference
method were significantly different from those to GCR (between GCR and blurring: (𝑈 = 32,644.0, corrected 𝑝 < 0.001,
𝛿 = 0.27, 95% CI = [2.58, 3.42]); between GCR and cartooning: (𝑈 = 18,744.5, corrected 𝑝 < 0.001, 𝛿 = -0.28, 95% CI =
[-1.39,-0.61]); between GCR and colorfilling: (𝑈 = 36,908.5, corrected 𝑝 < 0.001, 𝛿 = 0.41, 95% CI = [3.56, 4.44]); between
GCR and removal: (𝑈 = 33,412.5, corrected 𝑝 < 0.001, 𝛿 = 0.33, 95% CI = [2.58, 3.43])).

Our linear regression model indicated that relative size significantly predicted the response of perceived confidence
in maintaining narrative coherence (𝑏 = 1.196, 𝑡 (1140) = 2.542, 𝑝 < 0.05). The overall model, however, predicted the
responses of Q2-2 very weakly (adjusted 𝑅2 = 0.004, 𝐹 (4, 1140) = 2.43, 𝑝 < 0.05).
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5.4.2 Q2-3: Perceived Visual Harmony with Original Images. GCR achieved the highest score (5.34) in seamlessly
integrating its generated content with the original image style, ensuring that visual harmony remains while protecting
privacy.

Differences in protection methods could significantly influence the perception of visual harmony, as our Krustal-Wallis
test showed (𝜒2 (4) = 394.22, 𝑝 < 0.001, 𝜂2 = 0.34). The Mann-Whitney U tests with Bonferroni corrections revealed that
each reference method was significantly different with GCR (between GCR and blurring: (𝑈 = 42,540.0, corrected 𝑝 <
0.001, 𝛿 = 0.66, 95% CI = [3.60, 4.40]); between GCR and cartooning: (𝑈 = 30,756.0, corrected 𝑝 < 0.01, 𝛿 = 0.19, 95% CI =
[0.66, 1.34]); between GCR and colorfilling: (𝑈 = 47,737.0, corrected 𝑝 < 0.001, 𝛿 = 0.82, 95% CI = [4.56, 5.44]); between
GCR and removal: (𝑈 = 32,084.0, corrected 𝑝 < 0.001, 𝛿 = 0.28, 95% CI = [0.63, 1.37])). Given it had the highest score
of 5.34, we verified that GCR significantly obtained more agreement in preserving the visual harmony of the original
images compared to reference methods.

Our linear regression model demonstrated that privacy concern level significantly predicted the response of perceived
visual harmony with original images (𝑏 = 0.024, 𝑡 (1140) = 2.507, 𝑝 < 0.05), indicating people who considered about
privacy more would believe image protection methods could maintain visual harmony better. The overall model also
showed a weak prediction capability (adjusted 𝑅2 = 0.04, 𝐹 (4, 1140) = 13.27, 𝑝 < 0.001).

5.4.3 Q2-4: Perceived Overall Satisfaction on Edited Images. Images edited with GCR achieved significantly higher
overall satisfaction compared to those edited with the four reference methods. This was confirmed by a Krustal-Wallis
test (𝜒2 (4) = 302.18, 𝑝 < 0.001, 𝜂2 = 0.26), showing at least one protection method was significantly different to others.
Further, Mann-Whitney U tests with Bonferroni corrections confirmed significant differences when comparing GCR
with each reference method individually (between GCR and blurring: (𝑈 = 41,833.0, corrected 𝑝 < 0.001, 𝛿 = 0.63, 95% CI
= [2.62, 3.38]); between GCR and cartooning: (𝑈 = 33,240.5, corrected 𝑝 < 0.001, 𝛿 = 0.29, 95% CI = [0.67, 1.33]); between
GCR and colorfilling: (𝑈 = 45,236.0, corrected 𝑝 < 0.001, 𝛿 = 0.73, 95% CI = [3.58, 4.42]); between GCR and removal: (𝑈 =
32,016.0, corrected 𝑝 < 0.001, 𝛿 = 0.28, 95% CI = [0.63, 1.37])).

Our linear regression model showed that relative size (𝑏 = −2.960, 𝑡 (1140) = −7.228, 𝑝 < 0.001) and privacy concern

level (𝑏 = 0.026, 𝑡 (1140) = 2.983, 𝑝 < 0.01) could be a negative influencer and a positive influencer to the overall
satisfaction of edited images, respectively. In addition, the overall model could weakly predict these responses (adjusted
𝑅2 = 0.054, 𝐹 (4, 1140) = 17.44, 𝑝 < 0.001).

6 DISCUSSION

6.1 Balancing Privacy Protection, Detectability, and Narrative Coherence

Our study affirmed that approximately 60% of the edits made by GCR were undetectable to participants, with the
remaining edits necessitating a higher degree of scrutiny to be detected. In assessing the vulnerability of GCR, we
observed that participants’ confidence in identifying specific objects within GCR’s edits paralleled the confidence
levels observed with edits made through blurring, as determined by Mann-Whitney U tests (Section 5.3). Although we
classified blurring as a method with high vulnerability, we utilized a high intensity in our implementation, reducing the
original content to one-thirtieth of its original length (a 900-fold downsampling in size). This protection level guarantees
that GCR effectively obscures many types of content deemed to be privacy-threatening, such as humans, documents,
and screens, as highlighted in prior studies on intensified blurring effects [29].

The low edit detectability of GCR offers a promising avenue for individuals who wish to keep image alterations
subtle, an aspect largely overlooked in existing research. If alterations are unnoticed, it may reduce the likelihood of
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malicious entities trying to reverse-engineer the edits using advanced image generation techniques, such as image
upsampling [2]. Furthermore, the risk of information leakage through interpersonal connections could potentially be
reduced [19]. For instance, an individual might share a photo from a gathering, opting to blur certain faces to preserve
their friends’ privacy. However, if someone detects these edits and scrutinizes interpersonal relationships on social
networking service (SNS) platforms, they might decipher the identities of the blurred faces. If they are unable to detect
the edits, they might simply move on, believing that someone else appears in the photos. Therefore, we advocate for a
heightened focus on “detectability” when developing future image privacy protection strategies.

The high levels of narrative coherence, visual harmony, and overall satisfaction observed with images edited by
GCR might bolster its use in various image protection scenarios. For instance, in the context of photo sharing on SNS
platforms, where the perceived willingness to share photos has been found to be negatively related to the degree of
information that is downsampled or obfuscated [67], utilizing GCR might appeal to individuals who have previously
refrained from employing privacy protection due to concerns over altering the original visual appearance of images.
Furthermore, the widespread use of SNS platforms has significantly increased the prevalence of owning and sharing
images that contain others in social groups [25, 42]. GCR could potentially alleviate privacy conflicts between those
willing to share photos and those preferring not. For those inclined to share photos, intensive protection methods
proposed by other stakeholders might be ignored [65]. Implementing GCR, which maintains the overall visuals of photos,
might facilitate a more acceptable balance among individuals from various privacy concern groups. Subsequent research
might explore the applicability of GCR in diverse sharing settings and conduct qualitative studies to comprehend user
preferences regarding the utilization of GCR.

6.2 Prospective Applications of GCR

GCR shows promise as a tool for image privacy protection, especially when images are intended to convey information,
but without revealing personal or identifiable details. Similar to our previous discussions on image sharing on SNS
platforms, individuals may wish to share snapshots capturing unique moments involving bystanders. Using GCR allows
them to preserve the essence of the captured moment without infringing on the privacy of those unwittingly included
in the picture. GCR can also provide benefits in image-sharing circumstances where contents in the background may
potentially expose privacy-threatening information while other information sharing is necessary, such as in workspaces
and participatory sensing. In such instances, certain content could be discreetly replaced to ensure the usability of the
resulting image and prevent malicious reverting as illustrated in Section 6.1.

Recent HCI research has explored utilizing real substitutes to replace sensitive objects during image data collec-
tion [63]. We believe that employing GCR could make this process more convenient and expansive in the future,
if its integrated diffusion model can generate samples without causing data poisoning that degrades the model
training process [6]. When tasks require capturing visual content from the surrounding environment, it can replace
privacy-threatening content with substitutes tomaintain the usability of image data without needing specific instructions
or physical items for participants. This may not only elevate participants’ comfort but also augment the volume and
diversity of data they’re willing to contribute. In the future, it would be intriguing to see researchers deploy GCR in
crowdsourced data collections and subsequently assess the integrity and quality of the sanitized images.

GCR also holds promise for applications in specific communities. For example, visually impaired individuals who rely
on remote assistance often need to capture their surroundings to share with helpers [36]. By integrating GCR into these
systems, privacy-threatening content can be replaced, thus alleviating concerns from bystanders about their privacy
being compromised. This application of GCR could enhance the independence and confidence of visually impaired users
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in their interactions with the environment, while simultaneously respecting the privacy of those around them. GCR
may also facilitate studies on indigenous peoples, allowing researchers to build trust by respecting private lives and the
secret of their unique cultures while recording intangible cultural property [35]. We expect to leverage interdisciplinary
collaborations to explore the benefits of deploying GCR across various communities.

6.3 Ethical Considerations

Ethical implications of image manipulation techniques are timely in HCI. In our approach, the substitutes generated by
GCR originate from random noise, which makes it improbable for them to resemble real-world objects. This sets our
method apart from harmful impersonation techniques used in Deepfake technologies, as discussed in [72]. However,
being powered by advanced generative diffusion models [57], GCR highlights the potential responsible AI issues of
diffusion algorithms [12, 14], and meets challenges similar to those in AI-driven face synthesis [9]. The implicit prompts
within GCR could theoretically overlook certain details of the original content (Figure 2), leading the diffusion models
to unintentional bias into the outputs. For instance, GCR could change ethnic features when replacing human-related
content (e.g., altering skin colors). Whether this is an undesired feature in the specific context of obfuscating an image
can be of course debated. Nevertheless, future development of GCR could focus on enhancing its interactivity and
customization capabilities, affording more control to users over the generation process and producing outputs that are
both satisfying and responsible.

GCR aims to preserve the original category of the content being replaced, therefore minimizing potential misinterpre-
tations of the edited photos. However, using textual prompts to regulate content generation, it is still possible for GCR
to generate visual objects that do not belong to the original categories. Future research could focus on evaluating the
effectiveness of AI transparency strategies (e.g., content authenticity detection [22] and ’warning flag’ [38]) to prevent
misunderstanding during the perception of GCR’s edits in the context of image privacy protection.

Previous studies have also expressed concerns about human memory distortion stemming from existing image
protection methods [33]. Given its ability to alter details in real photos, GCR might similarly influence people’s
recollections of actual events, as suggested by prior psychological research [61, 70]. Therefore, the potential for GCR to
cause memory distortion should be thoroughly examined alongside existing image privacy protection methods. On the
other hand, GCR could potentially aid individuals in avoiding specific phobias by replacing real objects in photos with
substitutes that do not evoke stress. HCI researchers can deploy GCR in various contexts, exploring both its ethical
challenges and potential benefits.

Finally, it has been argued that humans should have the right to represent themselves in the world in a transparent
way. There exists the question of whether people have the right to take photos of people and share them in an obfuscated
form, even if the altercations were performed in the name of privacy protection [16]. Further research should delve into
how photo owners and bystanders perceive the disclosure of such edits and how viewers react to AI-altered images,
exploring e.g. various AI transparency methods in this context.

7 LIMITATIONS

The distribution of the images used in our data collection might cause biases in participants’ perceptions due to uneven
exposure to different obfuscation methods. Moreover, we did not conduct a power analysis before the study to confirm
the required sample size and each of the images received ratings from only one participant in our data collection. This
was to obtain the ratings for a broad range of images. Collecting multiple responses for each edited image could reveal
individual variances in how participants perceive edits made by GCR. Future research should expand data collection to
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Fig. 5. Examples of edited images where the generated content was not as natural as objects in the original ones. The left image
displays an unnatural hand, the center one shows a face without eyes and nose, and the right one presents unrecognizable characters
in the substitute. In intricate generation tasks, such as replacing parts of the human body, GCR sometimes struggled to produce
realistic substitutes, pinpointing a clear avenue for future development work.

deepen the understanding of user perception of GCR as well as existing image protection methods. This would also
help to establish a further understanding of GCR’s effectiveness and potential weakness.

In our vulnerability evaluation, we presented the original images alongside their edited versions, asking participants
to share their confidence level in identifying particular visual content. Ideally, GCR should exhibit a low vulnerability
level, close to methods like removal or colorfilling, given that the generated content has no relation to the original
content. The question used to derive this metric was Q2-1 (“To what extent do you agree that you can accurately
identify the particular original object, by only giving its corresponding edit?”). GCR may produce generated similar
objects to the original objects. Our participants thus might have considered that the edited images would convey some
information about the original objects.

Future studies should contemplate leveraging techniques such as perceptual area detection [78] and image matching
algorithms [60] to further substantiate the effectiveness of GCR, or engaging expert participants to provide a more
precise analysis of its vulnerability.

In our analysis of the results, we employed linear regression to determine whether the selected parameter spaces (i.e.,
relative size, relative position, aspect ratio, and privacy concern level) had significant impacts on participant responses.
Despite these parameter spaces exhibiting significance in various perceptual metrics, e.g., the influence of privacy
concern level on perceived overall satisfaction, the 𝑅2 values in these models remained generally very low. This suggests
that these independent variables did not account for a substantial portion of the variation in the responses. We hope
that future research will be able to identify more influential parameter spaces and provide a more accurate assessment
of GCR’s usability.

The subjective nature of privacy protection means that no single approach can universally cater to the diverse
needs of all demographic groups. Our participant selection, despite including nine countries, lacked significant cultural
diversity. Approximately 83% of participants were recruited from either the U.K. or the U.S., predominantly representing
Western culture. Previous research has underscored the cultural influence on privacy preferences [5, 15, 47], which, in
turn, might impact satisfaction levels with image editing as our results showed (Section 5.4.3). Therefore, subsequent
studies should factor in cultural backgrounds to discern if perceptions of GCR differ across cultures.

The images from DIPA [73] were specifically chosen from two large-scale datasets, OpenImages [37] and LVIS [27],
and annotated from a perspective of detecting any potential privacy threats to mitigate annotators’ privacy concerns
about the leakage of their own photos. This raises questions about whether the perceived image editing areas in our
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study can represent the desired editing areas in real-life image privacy protection practices, even though we filtered out
a diverse set of 270 visual content and corresponding images. For example, the rating results might be biased since
participants only encountered random people and objects from the DIPA dataset, rather than familiar things from their
own lives. Future studies should focus more on human-centered taxonomies of privacy-threatening content from the
perspective of online users (e.g., work by Li et al. [43]), and conduct in-the-wild experiments to analyze how individuals
engage with GCR in actual image-capturing and -sharing situations.

The current version of GCR sometimes faces challenges when processing complex scenarios, particularly those
involving humans or textual documents (Figure 5). By incorporating specialized models, e.g., those tailored for
altering human appearances [62] or creating visual text [75], we can potentially bolster GCR’s abilities. An advanced
implementation ofGCRwould offer a better showcase of the cutting-edge capabilities of generativemodels to participants,
possibly leading to even more promising experimental outcomes. However, as this paper focused on validating the
utility of GCR from a human-centered perspective, we leave exploring more advanced GCR algorithms to future work.

8 CONCLUSION

In this paper, we introduced a novel method for image privacy protection, named generative content replacement
(GCR), and verified its effectiveness using human-centered approaches. This innovative method extracts high-level
information about privacy-threatening content within images and subsequently generates authentic content to replace
the originals, effectively impeding access to privacy-threatening details. We show that GCR excels in concealing edit
traces (ensuring low detectability) and obfuscates particular privacy-threatening content to be identified as effectively as a
30x downsampling blurring method. Furthermore, our participants believed edits processed by GCRmaintained narrative
coherence and visual harmony of original images, and expressed high overall satisfaction with these edits. As image
capturing and sharing become increasingly pervasive in our daily lives, we believe that GCR will inspire researchers on
future innovations in image protection methodologies. Moreover, we expect human-centered investigations for a better
understanding of the future establishment of supportive interfaces to enable the general usage of GCR.
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