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Abstract—Light-based wearable sensing methods for human body motion, such as muscle oximetry, often rely on a few
single light emitters and receivers, which leads to limited sensing capabilities. While increasing the number of light sources
and sensors can help detect more complex motions, this increase in hardware often degrades wearability and mobility.
In this paper, we employ a flexible organic photosensor matrix surrounded by an LED array as the light source to detect
subepidermal images on the back of the hand. We then use computer vision and deep learning techniques to detect
patterns based on blood-related changes under the skin. Our sensor system can accurately distinguish 32 hand postures
and 17 gestures showing promise for ultra-light wearable systems in natural user interface applications.

Index Terms—Subepidermal image, hand posture, hand gesture, wearable sensor.

I. INTRODUCTION

Tracking hand motions has always been an important endeavor toward
developing interactive systems for motor learning, rehabilitation, sports,
and many other areas. However, the complexity of motion often requires
separate sensing methods to extract its two key components: the kinematics
(postures and movements) and the kinetics (forces and torques). Camera-
based systems and inertial sensors can accurately track the kinematic aspect
of body parts either remotely or by wearing them. Electromyography
(EMG) and muscle near-infrared spectroscopy (NIRS) are common
methods to detect the kinetic aspect of body parts, such as muscle activity
responsible for the movements [1]–[3]. However, all these systems can be
cumbersome and hinder mobility when tracking complex movements of
small body parts (e.g., when many sensors are placed on multiple fingers
and the hand to detect a comprehensive motion range [4]–[6]). This issue
becomes more apparent with EMG-based systems because they often
require skin preparation (e.g., shaving and use of special gels) and precise
sensor placement for accurate measurement at every use [7].

Muscle oximetry, an optical method based on NIRS, employs photo-
sensors and LEDs to detect light reflected from tissues under the skin.
This approach can detect blood oxygenation changes when muscles are
activated [8]–[10]. Moreover, in contrast to EMG-based methods, it does
not require skin preparation and performs well with peripheral body parts
because of the small size of the sensor components. However, it still needs
precise placement because only a couple of light sources and receivers are
often used [3], [8]. The increasing of the light sources and receivers can
solve this issue but would negatively impact wearability.

Recent developments in organic transistor technology allow the creation
of extremely thin and flexible matrices of photosensors that comply with
organic surfaces [11], making them ideal to be embedded into ultra-light
wearable systems without obstructing users’ body movements. By incor-
porating a suitable light source, an organic photodetector matrix, called an
imager, can show the variations of light reflected from subepidermal tissues
over an area [12]. For instance, it can detect the shape and movement of
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Fig. 1: a) Sensed area on the back of the hand showing the veins captured
by the imager. b) Sensor system placed on the back of the hand. c) Sensor
secured to the skin with a self-adhesive bandage. d) Original image retrieved
by our sensor. e) Processed image highlighting the veins to facilitate hand
posture and gesture recognition.

veins as they absorb more red and infrared light than other tissues around
them [13]. In this manner, substantially richer spatio-temporal information
about the subepidermal status can be obtained, unlike a single-point sensing
method, such as common devices based on near-infrared spectroscopy.

By exploiting the advantage of the imager, we design a wearable sensor
consisting of an organic photodetector matrix of 30 × 40 mm2, resolution
of 126 × 168 pixels (108 ppi), and a thickness of 0.1 mm, surrounded
by a flexible LED frame as the light source (Fig. 2). Users can wear our
sensor on the back of their hand and perform various hand postures and
gestures. The backend system processes the acquired images to highlight
veins and infer hand postures or gestures with deep learning techniques.
Our current prototype can recognize 32 hand postures and 17 gestures
while maintaining essential benefits as a wearable sensor, such as flexibility
and liberation from skin preparation and multiple sensor placement.

This paper presents our sensor prototype implementation and reports
the evaluation results on its posture and gesture recognition. Our main
contribution is twofold: (1) demonstrate the feasibility of hand posture and
gesture recognition using subepidermal images, and (2) show the broad
sensing capability of hand postures and gestures with a single sensor system.

II. HARDWARE

Our sensor consists of two main components: (1) the imager as the light
receiver and (2) an LED array around it as the light emitter.
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A. Imager

There is a trade-off when selecting the distance between the light source
and the photosensors. The further the sensor is from the source, the higher
the chances of capturing light backscattered from subcutaneous tissues
while the amount of light reaching the sensor decreases. Previous studies
found that a distance of around 20 mm is suitable [8] after considering
the size of notable superficial muscles. We draw on this finding for our
sensor dimensions and considered distances between 15 and 20 mm from
the center of the sensing area to the edges.

We extend Yokota et al.’s work [12] by employing a modified version
of their flexible imager. The imager consists of an array of organic
photodiodes coupled to an active matrix backplane with low-temperature
polycrystalline silicon (LTPS) thin-film transistors (TFTs) for data ad-
dressing. The LTPS TFT backplane was fabricated on a 10 µm-thick
polyimide layer, which was coated on a glass substrate. It also includes
an analog front end (AFE) (Fig. 2-a), which conditions the signals for the
main readout board. This imager is able to read out small photocurrents of
less than 10 pA sharing the same characteristics and fabrication process
as Yokota et al.’s original implementation [12]. However, our imager
presents an enlarged sensing area of 30 × 40 mm2, a reduced resolution
of 126 × 168 pixels (108 ppi) with a cell pitch of 235 µm, and a total
thickness of 0.1 mm.

The readout board containing a field-programmable gate array (FPGA)
has dimensions of 86 × 54 mm2 and allows a sampling rate of up to
30 fps, which represents an adequate speed. The readout board is further
connected via USB to a computer (CPU: Intel Core i7-8750h, 2.2 GHz).

B. LED Array

All tissues under our skin, including blood, present different light scatter-
ing and absorption coefficients that are wavelength dependent [8], [14].
Oximeters rely on this property and commonly employ red and NIR
lights where the difference in absorption between oxygenated and
deoxygenated hemoglobin in the blood is high [15]. Moreover, the
wavelength conditions the penetration depth of the light into our body.
Longer wavelength lights, like red and NIR (620 < _ < 2500 nm), pene-
trate deeper into our skin than shorter wavelength lights, such as blue and
green (450 < _ < 550 nm) [13], [16], [17]. However, conditions that vary
among people and body locations, such as skin color and subcutaneous fat,
affect the light wavelength and intensity required [18], [19].

In our work, we incorporate three different wavelengths in our device to
provide flexibility among users: 605 nm (orange), 660 nm (deep red), and
850 nm (NIR) (Fig. 2-b to d). Our LED array consists of 3 sets of 12 LEDs
(36 in total) embedded into a flexible PCB of 0.1 mm thickness. Each set
consists of 4 parallel subsets of 3 LEDs in series with a resistor to regulate
the current for each subset at 5 V. We employ an Arduino board to control
the intensity of the light emitted via PWM. Fig. 2 shows the LEDs on the
PCB arranged in a frame around the compartment that holds the imager.

C. Image Resolution

Our imager has a sensing area of 30 × 40 mm2 and a resolution of
126 × 168 pixels (108 ppi). However, to keep our sensor system (imager
and LEDs) suitable for most hand sizes, we placed the LEDs 3 mm away
from the edges of the imager. Unfortunately, this vicinity allows direct light
from the LEDs to be captured at the borders of the imager sensing area.
Hence, the effective sensing area is reduced to 80% of the original, which
is 24 × 32 mm2 with a resolution of 101 × 134 pixels (108 ppi).

Fig. 2: (a) Matrix of organic photosensors conforming the imager. Frame
consisting of a flexible PCB with 3 sets of 12 LEDs. Each set is activated inde-
pendently with 3 wavelengths: (b) orange (_ = 605 nm), (c) red (_ = 660 nm),
and (d) NIR (_ = 850 nm).

III. SENSOR IMAGE PROCESSING PIPELINE

Veins and tendons in the back of the hand provide useful information
about hand postures and gestures [20]. Veins are easily identified because
of their high red and NIR light absorption. Also, as the fingers flex,
the corresponding tendons create distinctive shapes on the skin surface
where they are underneath. Since this surface does not experience dramatic
changes, we can place our sensor on top of it to extract images (Fig 1).

A. Image Preprocessing

As our sensing mechanism is based on image classification, we
preprocess the subepidermal images extracted by our sensor to reduce noise
and improve classification accuracy [21], [22]. First, we apply contrast
limited adaptive histogram equalization (CLAHE) [23] to the raw image to
enhance contrast. We then use a modified unsharp masking (USM) kernel to
sharpen the edges while applying a low-pass filter to keep the main features
like veins. We further apply a light Gaussian blur and Otsu’s threshold to
keep a defined shape (Fig. 1-d). After this process, we obtain refined images
and videos linked to a specific hand posture or gesture, respectively. We
decided to keep the image processing simple and fast as we wanted to apply
posture and gesture classification in real-time. The overall preprocessing
pipeline takes approximately 9 ms per frame, complying with real-time
standards [24].

B. Image and Video Classification

For image and video classification, we employed Tensorflow’s Keras
on Python. We chose this platform because of its adaptability for im-
plementation in mobile and low-cost devices without affecting real-time
performance, which is suitable for wearable sensors [25], [26]. For the
postures, we use a 2D convolutional neural network (Conv2D). Conv2D is
a well-known deep learning technique for image-based data, which contain
spatial properties [27]. For the gestures, we employ a 2D convolutional
long short-term memory neural network (ConvLSTM2D), which performs
well with sequences of images thanks to the feedback connections of its
LSTM component [27], [28].

The employed Conv2D-based network was built with three convolutional
layers with ReLu activation function followed by a maxpool layer each.
Then, we employed batch normalization (BN) and dropout before flattening.
Finally, the end result was two fully connected layers leading to a softmax
layer. Moreover, we employed Adam optimizer and a learning rate of 0.001.
Figure 3-a shows the architecture of the Conv2D-based model employed,
which had in total 5,045,408 trainable parameters. Regarding gestures, the
ConvLSTM2D-based network was built with a single convolutional LSTM
layer with tanh activation function. The end result was two fully connected
layers with dropout in between leading to a softmax layer. Moreover, we
employed stochastic gradient descent (SGD) optimizer and a learning rate
of 0.001. Figure 3-b shows the architecture of the ConvLSTM2D-based
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Fig. 3: Architecture visualizations [29] of a) network for hand posture
classification and b) network for hand gesture classification.

model used, which had in total 8,868,753 trainable parameters. For videos,
frame dimensions were resized to 30 × 40 to reduce computation load
during training.

IV. HAND POSTURE AND GESTURE SET

We consider a total of 32 postures, of which 16 are included in the
American Sign Language (ASL), and 17 gestures:
• Postures: 27 postures based on all the combinations of fingers flexed

(except those that we considered difficult to achieve naturally) and 5
more postures for each single finger semi-flexed (Fig. 4-A).

• Gestures: Single finger flexion and return to the base hand posture
(Fig. 4-B.a to e). 5 more gestures using multiple fingers: flex 4 fingers
up to 90 degrees (Fig. 4-B.f), make OK gesture (Fig. 4-B.g1), make
OK gesture and then pinch (Fig. 4-B.g2), make fist (Fig. 4-B.h1), and
make fist and then grab tightly (Fig. 4-B.h2). Finally, 7 touchscreen-
based gestures with the index finger and thumb: rotate left/right, zoom
inward/outward, flick left/right, and double tap (Fig. 4-B.i to o).

V. EVALUATION

We conducted a study to examine the accuracy of posture and gesture
recognition with our system. We recruited 13 participants (8F/5M) aged
between 21 to 29 years old (mean: 25.1, SD: 2.4). All participants were in
good health at the time of the experiment and could move their hands and
fingers without any issue. The study protocol was approved by our IRB.

A. Data Collection Procedure

During the experiment, participants were asked to sit down and wear
our sensor on the back of their left hand (Fig. 1-a). We secured the sensor
placement and constant contact with the skin with a self-adhesive elastic
bandage (Fig. 1-b). We then asked them to perform the corresponding
postures and gestures shown in Fig. 4.

For all 32 hand postures and 10 gestures (Fig. 4-B.a to h2), participants
had their left arm extended in front of them with their hand in the prone
position (palm down) in mid-air. All fingers were extended conforming the
base posture (Fig. 4). To avoid fatigue, their forearm was supported by a 10
cm-high box. For the 7 gestures derived from common touch interaction
(Fig. 4-B.i to o), the support was removed and participants had their hands
laying directly on a flat surface (i.e., a desk).

For postures, we recorded data for 5 seconds while we asked participants
to move their hand and fingers slightly to add some variation to the data
collected. Then, we randomly extracted 10 frames from this time window.
For gestures, we asked participants to perform the actions within the time
window of 2 seconds.

Moreover, we asked all participants to repeat all the tasks two more
times, slightly changing the sensor position. We moved it 3~5 mm up and
down in the direction of the longest edge of the sensor while rotating it
3~5° randomly. In this manner, we took the effect of the sensor placement

Fig. 4: (A) 32 hand postures evaluated. Numbers indicate the ordinals for
fingers flexed from left to right. h indicates half flexion. (B) 17 hand gestures
evaluated. Gestures a to h2 start and end at Base. Gestures i to o represent
touchscreen-based actions.

variance into account for evaluations. The study took about 3 hours,
including 10-minute breaks between each sensor position change. None of
the collected video data overlapped with each other, and all were stored as
MP4 files, while the frames extracted were stored in JPG format. In total,
we collected 2210 videos (10 samples × 17 gestures × 13 participants)
and 4160 images (10 samples × 32 postures × 13 participants). No data
processing on the recorded images was done during the experiment. We
paid 3900 JPY (around 30 USD) as compensation at the end of the study.

B. Classification Procedure

After gathering the data, we conducted a classification test using two
classifiers, one for images (postures) and another for videos (gestures), as
explained in section III-B.

To augment our dataset, we employed blurring and contrast variation [30]
to simulate different readings that could be caused by sensor placement at
different pressures. We performed Leave-10%-samples-per-participant-out
cross-validation for classification accuracy evaluation. For training and
testing, we randomly chose 90% of the samples for one class (posture or
gesture) from each participant for training and used the rest of the samples
for testing. For both posture and gesture classifiers, the batch size, epochs,
and steps per epoch were 32, 10, and 2000, respectively. Training time for
postures was 4 minutes, whereas for gestures, it was 164 minutes (GPU:
NVIDIA GeForce RTX 2080 Ti, 9655 MB). We repeated this process 10
times and obtained an average classification for both postures and gestures.

VI. RESULTS AND DISCUSSION

Overall accuracies reached 94.61% and 95.48% for posture and gesture
classification, respectively. Fig. 5 shows the confusion matrices and
precision, recall, and F1-score values for hand postures and gestures.

Recognition of hand postures with one finger flexed, including postures
with semiflexed fingers (i.e., f1h to f5h), yielded F1-scores between 0.94
and 0.97, showing slightly better performance than postures with two
or more fingers flexed. Recognition of gestures based on single finger
flexion (i.e., pinkie to thumb flexion) produced F1-scores between 0.98 and
0.99, indicating better performance than the other 12 gestures evaluated.
Moreover, we obtained high F1-scores among the four gestures that
involved force exertion. Make ok and make ok and pinch yielded 0.96
and 0.97, respectively, whereas make fist and make fist and grab, 0.95
and 0.96, respectively. Touchscreen-based gestures showed slightly lower
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Fig. 5: Confusion matrices for (a) hand postures and (b) gestures.

F1-scores, particularly between pairs of similar movements (i.e., rotate left
and right, with 0.96 and 0.95, respectively; zoom inward and outward, both
with 0.92; and flick left and right, both with 0.89).

The high F1-scores among hand postures with completely flexed fingers
and semi-flexed fingers indicate that it is feasible to recognize various
degrees of finger flexion. Moreover, our system could easily identify
between hand gestures that involve forces (i.e., make ok and pinch and
make fist and grab, Fig. 4-B.g and h). This result shows the capability of
our system to detect both kinematic and kinetic information with a single
device. Future work should investigate how this sensing method can be
extended to obtain more fine-grained posture and gesture patterns (e.g.,
using a regression model to identify angles in flexion).

Our study expands previous work results based on sensing the back of
the hand, such as BackHand [20], which evaluated 16 hand shapes from
the ASL that we also cover. We followed a similar evaluation protocol
achieving comparable accuracies with an expanded posture and gesture set.

While our results achieve high classification accuracy, our current
training protocol included the data taken from the same participant, and thus,
the classifiers were trained in a partially user-dependent manner. As our
sensor is wearable, its use would be personal, and user-dependent training
would be possible. We observed that the images produced by the same hand
postures and gestures varied much across participants. This is attributed to
various factors, including the hand size, the variance of the vein distribution,
the levels of fat above the veins, and the skin color. Although classifiers
under user-independent training would be expected to perform much less
accurately due to this data variance, future work should investigate how
classification systems could accommodate individual differences to improve
the generalizability of this sensing method. Nevertheless, our work offers a
foundation for such future research by confirming the feasibility of sensing
with subepidermal images via reflected light.

Regarding wearability, our sensor was flexible enough to stay attached
to the skin by using a bandage for all our participants. Moreover, it was
robust to random small motion variations at the fingers and wrist. However,
it suffers from low stretchability and breathability, which are key features
for on-skin devices. We expect that our sensing method can be employed in
future implementations based on electronic tattoos, freeing the hand from
any bandage and improving stretchability, breathability and flexibility.

VII. CONCLUSION

We present a wearable sensor based on organic flexible photodetectors
and LEDs designed to recognize a variety of hand postures and gestures.
Our sensor extracts images with the backscattered light from the subepider-
mal tissue at the back of the hand. Our evaluation showed that the sensor
can distinguish 32 different hand postures and 17 gestures, both with 0.95
F1-score accuracies. This work thus demonstrates the feasibility of using
subepidermal images with reflected light for hand posture and gesture
sensing, and encourages researchers to explore other kinds of human body
postures and motions.
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