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Fig. 1. Example inputs and outputs of our method. Given a small input exemplar, our algorithm can synthesize various types of continuous curve textures. Our
results are shown in vector format. Please zoom in to see the details.

Repetitive patterns are ubiquitous in natural and human-made objects, and
can be created with a variety of tools and methods. Manual authoring pro-
vides unmatched degree of freedom and control, but can require significant
artistic expertise and manual labor. Computational methods can automate
parts of the manual creation process, but are mainly tailored for discrete pix-
els or elements instead of more general continuous structures. We propose
an example-based method to synthesize continuous curve patterns from
exemplars. Our main idea is to extend prior sample-based discrete element
synthesis methods to consider not only sample positions (geometry) but also
their connections (topology). Since continuous structures can exhibit higher
complexity than discrete elements, we also propose robust, hierarchical
synthesis to enhance output quality. Our algorithm can generate a variety of
continuous curve patterns fully automatically. For further quality improve-
ment and customization, we also present an autocomplete user interface to
facilitate interactive creation and iterative editing. We evaluate our methods
and interface via different patterns, ablation studies, and comparisons with
alternative methods.
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1 INTRODUCTION
Repetitive patterns are fundamental for a variety of tasks in de-
sign [Kazi et al. 2012; Lu et al. 2014] and engineering [Chen et al.
2016; Martínez et al. 2015; Schumacher et al. 2016; Zehnder et al.
2016; Zhou et al. 2014]. Manually creating these patterns provides
high degrees of individual freedom, but can also require signifi-
cant technical/artistic expertise and manual labor. These usability
barriers can be reduced by automatic methods that can synthesize
patterns similar to user-supplied exemplars [Barla et al. 2006; Hsu
et al. 2018, 2020; Hurtut et al. 2009; Ijiri et al. 2008; Kazi et al. 2012;
Lu et al. 2014; Ma et al. 2013, 2011; Suzuki et al. 2017]. However,
existing techniques mainly focus on discrete patterns consisting
of image pixels or shape elements, and might not apply to general
patterns consisting of continuous curves, which can be connected
or intersected with one another.
We propose an example-based method that can automatically

synthesize continuous curve patterns from user-supplied exemplars.
Similar to prior pixel/sample-based methods [Landes et al. 2013;
Lu et al. 2014, 2012; Ma et al. 2013, 2011; Roveri et al. 2015; Wei
et al. 2009], users can provide exemplars and have the algorithm
automatically produce results in desired sizes and shapes. However,
different from previous methods and systems that are restricted
to discrete pixels/elements or limited continuous structures, our
method can handle both discrete elements and continuous curves
in a variety of patterns (Figure 1).

Our main idea is to extend prior sample-based element synthesis
methods [Hsu et al. 2018; Kazi et al. 2012; Ma et al. 2013, 2011] to
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(a) Exemplar (b) Samples of (a) (c) [Ma et al. 2011] (d) [Roveri et al. 2015] (e) [Tu et al. 2019] (f) Our output samples (g) Reconstruction of (f)

Fig. 2. Comparison with prior point/sample synthesis algorithms. The methods in [Ma et al. 2011; Roveri et al. 2015; Tu et al. 2019] generate samples without
considering their connections in the exemplars (b). Thus, their results, as shown in (c), (d), and (e), preserve the sample distributions less well than ours in (f).
It is also unclear how to reconstruct continuous curve patterns from (c), (d), and (e). (g) shows the curve reconstruction from (f).

consider not only sample positions (geometry) but also their con-
nections (topology) in all major algorithm components, including
pattern representation, neighborhood similarity, and synthesis opti-
mization consisting of search and assignment steps. Our algorithm
uses a graph representation for both topology synthesis and geomet-
ric path reconstruction for general continuous patterns, in contrast
to the graph representations in [Hsu et al. 2018, 2020] that only
apply to discrete elements. Since continuous patterns can exhibit
higher complexity than discrete elements, we propose robust, hier-
archical synthesis [Wei and Levoy 2000, 2001] to enhance output
quality.

Automatically generated outputs, although convenient, might not
have sufficient quality or fit what users have in mind for their par-
ticular applications. To facilitate further editing and customization,
we also propose an interactive autocomplete authoring interface
[Hsu et al. 2020; Xing et al. 2014] built upon our synthesis algorithm
components. Similar to existing design tools, users can create vari-
ous free-style patterns. When they have sufficient exemplars and
would like to reduce further manual repetitions, they can specify
an output domain to be automatically filled [Kazi et al. 2012; Xing
et al. 2014]. The synthesized patterns resemble and seamlessly con-
nect with what has already been drawn. If not satisfied, users can
accept or modify the predictions, or ask for re-synthesis to maintain
full control. They can further designate specific source regions for
cloning to target regions.
We analyze our algorithm via ablation studies, compare it with

alternative methods, and demonstrate the quality and accessibility
of our system via pattern design results. We plan to share our code
along with the publication of this paper to facilitate reproduction.
In sum, the contributions of this work are:

• A hierarchical representation and a synthesis method for both
geometry and topology of continuous and discrete patterns.
• An interactive authoring systemwith autocomplete functions
to reduce manual workloads and facilitate user control.

2 RELATED WORK
Our work is inspired by prior art in vector patterns, image textures,
and interactive workflows. Procedural methods [Loi et al. 2017;
Pedersen and Singh 2006; Santoni and Pellacini 2016] can produce
intricate structures, but are limited in scope and difficult to gen-
eralize for different types of patterns. Example-based methods are
general, but existing work predominantly focuses on image textures
[Gatys et al. 2016; Lu et al. 2014; Wei et al. 2009] rather than vector
patterns. Below, we survey methods most related to our work.

2.1 Example-based Pattern Generation
Example-based methods are designed to generate large patterns
from small exemplars with an optional control provided by the
users [Barla et al. 2006; Bhat et al. 2004; Hsu et al. 2018; Hurtut et al.
2009; Ijiri et al. 2008; Landes et al. 2013; Ma et al. 2013, 2011; Roveri
et al. 2015; Tu et al. 2019; Zhou et al. 2007, 2006]. However, these
methods target discrete elements or samples [Hsu et al. 2018, 2020;
Hurtut et al. 2009; Ijiri et al. 2008; Landes et al. 2013; Ma et al. 2011;
Tu et al. 2019] and treat continuous structures as special cases via
curve/surface reconstruction from point samples [Ma et al. 2011;
Roveri et al. 2015]. Roveri et al. [2015] reconstructs the output
surface from synthesized point samples via their associated surface
normals without considering sample connections, and thus can
only be applied to surfaces relatively smooth to the underlying
sampling density. Tu et al. [2019] extends neural point synthesis by
treating a graph edge as a line of points, which is essentially point
synthesis. The neural optimization method does not provide the
same flexibility and efficiency as in our method and it is unstable
when the points contain attributes beyond positions. Relatively few
works focus on curves, such as enriching details of given coarse
curves [Hertzmann et al. 2002] or growing L-system-like curves
[Merrell and Manocha 2010]. Our system is inspired by these prior
sample-based algorithms [Hsu et al. 2020; Ma et al. 2011; Roveri
et al. 2015], but we explicitly incorporate both samples and their
connectivity into our representation and optimization to synthesize
more general continuous structures, as shown in Figure 2.
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Fig. 3. User Interface. Our interface has a widget panel and a canvas. The
widget panel provides basic tools, such as selection in a vector editor, as
well as controls to the graphics parameters, including color and pen width,
and modes unique to our autocomplete system.

2.2 Interactive Authoring
Workflow analysis has been investigated to assist various content
creation task [Nancel and Cockburn 2014]. Examples includes static
and animated sketches [Xing et al. 2014, 2015], 3D sculpting [Peng
et al. 2020, 2018], texture design [Suzuki et al. 2017], hand-writing
beautification [Zitnick 2013], and image editing [Chen et al. 2011;
Koyama et al. 2016]. Our work is inspired by prior autocomplete
[Peng et al. 2018; Suzuki et al. 2017; Xing et al. 2014, 2015] and
interactive systems [Bian et al. 2018; Hsu et al. 2020; Kazi et al. 2012].
However, these systems can automate only relatively simple patterns
(e.g., repetitive hatches or strokes). Our method can automatically
generate diverse and complex continuous curve patterns to facilitate
iterative design with reduced input workload.

3 USER INTERFACE
Our system can be used for both automatic synthesis and interactive
editing. Similar to prior work like traditional texture synthesis [Wei
et al. 2009], the user provides an exemplar pattern and lets our
system automatically produce the output with desired size and
shape. The exemplar is represented via Bézier curves. Inputs in
other formats can be converted to Bézier curves (for example, by
vectorizing a raster image).

Since the automatic synthesis results might not be what the users
want and they might need to create new patterns manually, we
also provide an interface built upon our automatic synthesis al-
gorithms for users to author patterns interactively. Through the
interface, users can specify an output domain in desired size and
shape (Figure 4a) and let our system predict patterns that resemble
what the users have already drawn (autocomplete mode, Figures 4a
and 4b). The users can also explicitly control the prediction by
copying-pasting from an input region to an output region (clone
mode, Figures 4c and 4d). They can accept, partially accept, or re-
ject the predictions via keyboard shortcuts and mouse selections.
They can also perform further edits, such as selecting regions for
re-synthesis or adding paths in the predictions. Please refer to the

(a) Autocomplete: before (b) Autocomplete: after

Source Target

(c) Clone: before (d) Clone: after (e) User edit

Fig. 4. Autocomplete and clone. In the autocomplete mode, the user can
specify an output region (shown in yellow) (a) and let our system generate
predicted patterns (b). In the clone mode, the user can specify a source
region (in red) and clone it to a target region (c). Our system can generate
predictions adaptive to the existing patterns (d), upon which users can
perform further refinements (e). (e) is generated by editing the top left
corner (in blue) of the predictions, including 1) partially rejecting several
paths, 2) copy-pasting two elements, and 3) adding a path.

supplementary video for live actions. Since continuous patterns of-
ten contain complex structures beyond fine-grained autocomplete of
individual strokes [Xing et al. 2014], we design our current interface
to focus on autocomplete pattern regions instead of strokes.

4 METHOD
Our method extends the sample-based element texture synthesis
method in [Ma et al. 2011] to consider not only individual point
samples but also their curved connections via graphs [Hsu et al.
2018, 2020]. We describe our pattern representation in Section 4.1,
similarity measures in Section 4.2, and the corresponding synthesis
and reconstruction algorithms in Sections 4.3 and 4.4. Our method
can handle discrete elements, continuous structures, and their com-
binations. We will describe when and how our algorithms treat them
similarly or differently.

4.1 Representation
We represent patterns and elements via point samples and graphs
(Figure 5) [Hsu et al. 2018; Ma et al. 2011; Roveri et al. 2015]. Each
sample s records its position p(s), attributes a(s) (Table 1), and i(s) ∈
[0, 1] to indicate the confidence of its existence to optimize the
number of samples:

u(s) = (p(s), a(s), i(s)) . (1)

Discrete elements. Following [Ma et al. 2013, 2011], for discrete
elements, sample attributes include a sample id q(s) that indicates
the uniqueness of s to other samples within its containing element.

Continuous structures. In discrete element synthesis, it is sufficient
to use only samples with id q(s) (Figures 5a and 5b) to encode
element shape because every element has the same topology [Ma
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(a) Single-res (b) Multi-res (c) Pattern (d) Graph

Fig. 5. Pattern representation. Existing algorithms [Ma et al. 2011] only use
a single-resolution element representation (a). We propose a hierarchical
element representation to improve the synthesis quality (b). Our synthesis
proceeds from red, blue, to yellow samples in coarse to fine levels. A pattern
(c) is represented by a graph (d), where we record connections (yellow edges)
and local path orientations (arrows) in addition to point samples. The color
of a sample indicates the number of connections |E(s) | associated with it;
orange, green, and blue indicate 1, 2, and 3.

Table 1. Sample attributes. Each sample s records its attributes a(s) that may
vary in terms of types of patterns (discrete element or continuous structure).
q(s) ≥ 0 indicates uniqueness of a sample relative to other samples within
a discrete element, and q(s) = −1 for continuous structures. E(s) = {ess′ }
records all edges associated with s , where ess′ is an edge between s and s′.
o(s) records the local orientations of the paths intersecting at sample s .

Attributes Sample id Connectivity Orientation
a(s) q(s) E(s) = {ess ′} o(s)

et al. 2011]. On the other hand, continuous structures are composed
of paths and have more flexibilities. In our paper, we represent paths
by linear and quadratic Bézier curves, even though other vector
curve formats can be easily added. The paths may be connected to
each other with complex topologies (Figure 1). Thus, samples alone
are not sufficient to disambiguate matching and reconstruction of
continuous structures. Therefore, we also consider connectivity
among samples, leading to a graph-based representation (Figure 5d).
Note the method in [Hsu et al. 2018, 2020] also adopts a graph-based
representation, but it is for discrete elements only without explicitly
modeling paths in a continuous pattern.
Specifically, we record the connectivity E(s) for s within a(s).

E(s) = {ess ′} is the set of edges associated with s , where ess ′ repre-
sents the edge between the two samples s and s ′. We use i(e) ∈ [0 1]
to indicate the confidence of an edge existence; i(ess ′) = 1/0 indi-
cates the presence/absence of an edge between s and s ′. Wewill relax
the binary i(ess ′) to be within the range [0 1] during optimization-
based synthesis. While E(s) records pattern topology, we also record
the tangent angles at s on a path via an orientation attribute o ∈ RNo

as part of a(s), where No is the number of entries in o(s). Each entry
o of o is within [0, 2π ). We record o to facilitate pattern reconstruc-
tion from graphs (Section 4.4.2 and fig. 15). Note that, for any input
samples si , we always have |E(si )| = No(si ) (Figure 5d), where |E |
is the size of the edge set E. However, this strict constraint is relaxed
for the output during the synthesis to facilitate faster convergence.

4.1.1 Hierarchical Pattern Sampling. We adopt a multi-resolution
representation of sample graphs to handle patterns with complex

structures, analogous to prior multi-resolution algorithms for color
texture synthesis [Wei and Levoy 2000, 2001]. The representation is
sparser with less samples at coarser resolutions and becomes denser
with more samples at finer resolutions. By default, we use three
level of hierarchies, which suffice in our experiments. Users can
decide to use fewer levels if needed.

Discrete elements. We generate element samples using a simple
approach (Figures 5a and 5b). The finest level of samples are gener-
ated by sampling the element polygon. The coarest level contains
only one sample centered at each element. The middle level of sam-
ples are located at the midpoints of each downsampled finest-level
samples and the coarest-level element centers.

Continuous structures. For continuous patterns (Figure 5c), we
sample the intersections (blue samples in Figure 5d) and ends of
paths (orange samples) and uniformly place samples (green samples)
along paths with spacing δ . We discuss the parameter δ values in
Section 5.1.

4.2 Similarity Measure
A core part of pattern synthesis is a measure of similarity between
local regions [Ma et al. 2011; Roveri et al. 2015; Wei et al. 2009].
Here, we describe our similarity measure for continuous patterns
via their sample-graph representation (Section 4.1), which, in turn,
will form the basis for our synthesis optimization (Section 4.3).

4.2.1 Sample Similarity. The difference between two samples s
and s ′, which includes the differences in the global position p and
attributes a, is defined as follows:

p̂(s, s ′) = p(s) − p(s ′), (2)

â(s, s ′) =
(
q̂(s, s ′), Ê(s, s ′)

)
(3)

The differences in sample id attribute q is

q̂(s, s ′) = 1
{
q(s) , q(s ′)

}
, (4)

where 1(·) is an indicator function that equals to one if its condition
· holds, and zero otherwise. The edge set difference is

Ê(s, s ′) = ©­«
∑

esŝ ∈E(s)
dist (esŝ , es ′ŝ ′)

ª®¬ + β
��|E(s)| − |E(s ′)|�� , (5)

where dist (esŝ , es ′ŝ ′) = ∥p̂(s, ŝ)− p̂(s ′, ŝ ′)∥ is the difference between
esŝ and es ′ŝ ′ , and es ′ŝ ′ = me (esŝ ) ∈ E(s ′) is the matching edge
for esŝ via the Hungarian algorithm (which solves the one-to-one
matching relationship between edges) [Kuhn 1955] to minimize the
first term in Equation (5) (m indicates matching relationship). β is
a weighting parameter set to sampling distance δ (Section 4.1.1) in
our experiments.
For newly added output samples that do not have any edges,

either by initialization or existence assignment (Section 4.3), we
want them to be useful and connected to existing output samples.
To this end, they should be encouraged (via lower cost) to match
with input samples during the search step (Section 4.3.3). We set
β = 0 for these samples and thus Equation (5) becomes 0, as the first
term is also 0 since newly created samples do not have edges.
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We do not include o within the attribute similarity term (Equa-
tion (3)) since E already contain similar information in o. How-
ever, we still need to update o during synthesis (assignment step,
Section 4.3.4) and reconstruction (Section 4.4). This requires us to
match orientation entries o within o from s and s ′ respectively. The
matching o(s ′) =mo (o(s)) ∈ o(s ′) is computed via the Hungarian
algorithm [Kuhn 1955] by minimizing the sum of smallest absolute
differences between matched o(s) and o(s ′)

ô(s, s ′) =
∑

o(s)∈o(s)

ô(s, s ′), (6)

where ô(s, s ′) = min (|o(s) −mo (o(s)) |, 2π − |o(s) −mo (o(s)) |).
We also have not found it necessary to include i in the sample

similarity measure (Equation (3)). Instead, i will be used to optimize
the number of samples.

4.2.2 Neighborhood Similarity. We define n(s), the neighborhood
of s , as a set of samples around s’s spatial vicinity within a certain
radius r . The neighborhood similarity is defined as

∥n(so ) − n(si )∥ =
∑

s ′o ∈mn (n(si ))

ûsosi (s
′
o , s
′
i ) +

∑
s ′o ∈n(so )⊖mn

c(s ′o ),

(7)

where

ûsosi (s
′
o , s
′
i ) = ∥p̂(so , s

′
o ) − p̂(si , s

′
i )∥ + γ ∥â(s

′
o , s
′
i )∥ (8)

is the sample similarity between s ′o and s ′i within neighborhoods
centered at so and si respectively. s ′i =ms (s

′
o ) is the matching input

sample for s ′o . We discuss how to match samples within n(so ) and
n(si ) in Section 4.2.3. The positional differences ∥p̂(so , s ′o )−p̂(si , s ′i )∥
are computed in local neighborhood coordinate systems centered
at so or si . The two terms in Equation (7) partition n(so ) into two
sets. In the first term of Equation (7), mn (n(si )) is the subset of
n(so ) matched with samples within n(si ). In the second term of
Equation (7), c(s ′o ) is the cost resulting from unmatched output
samples s ′o . In our implementation, γ = 0.5. Equation (7) is designed
for our robust neighborhood matching, described next.

4.2.3 Robust Neighborhood Matching. In [Ma et al. 2011], each
output sample is forced to match with another sample in the in-
put, which could be problematic since some output samples are
outliers and should not be matched to any input samples. Some
output samples might be missing in the current iteration of opti-
mization. But this forced matching allows to easily define sample
similarity for various sample attributes, as shown in Section 4.2.1,
since we have one-to-one sample correspondence. We call this hard
neighborhood matching (Figure 6a). In [Roveri et al. 2015], the neigh-
borhoods are matched via comparing their density fields estimated
with Gaussian kernels. This similarity criterion is computed with
the neighborhoods as a whole. There is no one-to-one correspondence
between samples. We call it soft neighborhood matching (Figure 6b).
The method [Roveri et al. 2015] "smears the sample attributes into
their neighborhood" by encoding them as the height of the density
kernel, which could unnecessarily couple the position and attribute
information. It is not easy to integrate soft matching with various
sample attributes, which can include edges.

Instead, we propose to use a robust neighborhood matching that
explicitly considers outliers in the output to address these issues
(Figure 6c). An output sample is either matchedwith an input sample
or unmatched as an outlier with additional cost c . We apply the
Hungarian algorithm to compute the matchings between input
n(si ) and output neighborhoods n(so ). The input of the Hungarian
algorithm is a cost matrix where each entry indicates the matching
cost between an output and an input sample. Inspired by [Riesen
and Bunke 2009], we define our cost matrix C ∈ RNno×(Nni+Nno ) as:

C =
[
Cm Cu

]
(9)

Cm =


ûsosi (s

′1
o , s
′1
i ) ûsosi (s

′1
o , s
′2
i ) · · · ûsosi (s

′1
o , s
′Nni
i )

ûsosi (s
′2
o , s
′1
i ) ûsosi (s

′2
o , s
′2
i ) · · · ûsosi (s

′2
o , s
′Nni
i )

...
...

. . .
...

ûsosi (s
′Nno
o , s ′1i ) ûsosi (s

′Nno
o , s ′2i ) · · · ûsosi (s

′Nno
o , s ′Nni

i )


(10)

Cu =


c1 c1 · · · c1
c2 c2 · · · c2
...

...
...

...

cNno cNno · · · cNno


, (11)

where the superscripts of s ′o or s ′i represent the index of a sample
within n(so ) or n(si ). There are Nni and Nno samples within n(si )
and n(so ), respectively. In [Ma et al. 2013], the sample matching is
computed via only the Cm part of C, in which case every output
sample should be matched. Our cost matrix is augmented with
the Cu side, where each entry represents the cost of unmatched
outliers in n(so ). We make sure there are enough samples in the
input neighborhood so that an output sample would not be matched
only when it is an outlier that would result in a high cost increase
in matching. For the same reason, we do not take missing output
samples into account in the cost matrix formulation.

In our implementation, ck is set as min(2, 1.2+ 0.4|E(sko )|)δ if the
output sample sko is from a continuous pattern, and 1.5× average
nearest neighbor distance if sko is from a discrete element. In an
interactive system, we may synthesize predictions near the provided
exemplars. If sko is from the exemplars, ck = ∞ because none of the
samples from the exemplars are outliers and all of them should be
matched.
In a neighborhood, there might be samples from both discrete

elements and continuous structures. We only match samples from
the same type of patterns and with the same id, i.e. continuous
structures only match with continuous structures (negative id), and
discrete elements only match the same discrete elements and their
samples with the same (non-negative) ids.

4.3 Pattern Synthesis
Based on our pattern representation (Section 4.1) and similarity
measures (Section 4.2), we now describe how to synthesize an output
similar to a given input.
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Output Input

(a) Hard neighborhood matching

(Density) (Density)

(Kernel)
Output Input

(b) Soft neighborhood matching

Output Input

(c) Robust neighborhood matching

Fig. 6. Different neighborhood matching methods. In (a) each sample in the output (left) is forced to match with another one in the input (right), which could be
problematic since some output samples are outliers and should not be matched to any input samples, and some output samples might be missing in the
current iteration of optimization. Matched samples are with the same color. Black indicates unmatched. In (b) samples are not explicitly matched but the
neighborhood is matched as a whole, by transforming the samples with density kernels [Roveri et al. 2015]. There is no one-to-one correspondence between
samples, and thus it is not easy to integrate with various sample attributes. Instead, we propose robust neighborhood matching (c) to generate high-quality
sample distributions to accommodate various types of patterns. We allow output samples to be unmatched if it can result in high matching cost increase. In
the above example, the yellow output sample in (a) destroys the hard neighborhood matching and forces other (orange, and gray) samples to be less matched,
while our robust matching leaves the bad sample unmatched.

4.3.1 Optimization Objective. We synthesize output predictions O
via optimizing the following objective:

E(O) =
∑

si=m(so ),so ∈O

∥n(so ) − n(si )∥ + Θ(O,D). (12)

where so is matched with si . This energy sums up the similarity
between every n(so ) in O and its most similar n(si ) via Equation (7).
Θ(O,D) is the domain constraint term [Dumas et al. 2018] to en-
courage the synthesized samples to stay within the user-specified
domain D.

The pattern optimization framework adopts an EM-like strategy
to minimize Equation (12), by iterating the search and assignment
steps as detailed below.

4.3.2 Initialization. Similar to prior patch-based texture synthe-
sis methods [Efros and Freeman 2001; Liang et al. 2001], we copy
new patches one-by-one with similar boundary patterns to existing
patches for initialization. Each next patch is selected to ensure high
similarity (as evaluated by Equation (7)) in the overlapped boundary
regions with existing patches. In the overlapping regions, we only
copy samples unmatched with any sample in the existing patches.
We make sure that the initialized samples are within the output do-
main D by removing samples outside it. We copy discrete elements
in wholes like [Ma et al. 2011]. In Section 5, we will show the ro-
bustness of our method to random sample initializations (Figure 14).
But patch-based initialization makes the algorithm converge faster,
contributing to the responsiveness of the interface. For simplicity,
we do not copy edges in the initialization step.

4.3.3 Search Step. We adopt PatchMatch [Barnes et al. 2009; Chen
et al. 2012] to compute approximate nearest neighbors (ANN) for
each output sample. The standard PatchMatch algorithm 1) ran-
domly generates the initial nearest neighbor field, and 2) alternates
between propagation and search steps by traversing the regular
image grid in a scanline order. Initially, we generate the ANN by
randomly assigning an output sample to an input sample (with iden-
tical sample id for discrete elements). One issue is how to choose a

sample traversal order. We follow the steps from [Chen et al. 2012]
which works on meshes. We build a simple graph by connecting
each sample with its k-nearest neighbors (k = 8 in our implemene-
tation), and perform breadth-first search. In the next iteration, the
traversal starts from the last sample in the most recent sequence.

In our implementation, for the random search step, the maximum
window size is 150, and the minimum size is 25, and the search
window is exponentially decreased with factor 2. In each pattern
optimization step, we need to compute an ANN. In two consecutive
steps, the output sample distributions are similar. So the previous
ANN is used to initialize the subsequent patch match algorithm.
Since the initialization is close to the converged ANN, a small num-
ber (2) of Patch Match iterations is used, except for the initial step
at each level of hierarchical synthesis (Section 4.3.5), which uses
5 iterations. Our patch match implementation is parallelized by
equally dividing the output domain into regions, the number of
which equals to that of threads. The search step consumes most of
the computation time needed by the synthesis. The computational
complexity of the search step in an optimization step is O(nON 3

n),
where nO is the total number of output samples and Nn is the av-
erage number of samples within neighborhoods. Please refer to
Appendix C for more details.

4.3.4 Assignment Step. Here, we describe how to determine the
values of sample positions p, attributes including edge E and ori-
entation o, as well as sample existence i . The assignments of these
different quantities are extended from the assignment step of pixel
colors [Kwatra et al. 2005] and sample positions [Ma et al. 2011] by
taking votes from overlapping output neighborhoods at the same
entity (such as sample or edge). In particular, discrete samples only
have sample id attributes q, which is used in the search step to make
sure only samples with the same q are matched. Thus, only position
assignment is deployed for discrete samples.

Position assignment. For each output sample so and its neighbor
s ′o , there is a set of matched input sample pairs

(
si , s
′
i

)
provided by

the previous search step. The estimated distance p̂(so , s ′o ) between
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output input

(a) Matched neighborhood pair 1

output input

(b) Matched neighborhood pair 2

output input

(c) Matched neighborhood pair 3

output

i( ) = !
"

i( ) = 0

(d) Assign existence

Fig. 7. Existence assignment example. We visualize how to compute confidences of existence of output samples i(so ) (Equation (15) and algorithm 1) from a set
of matched input and output neighborhoods. (a) (b) (c) show three pairs of matched input and output neighborhoods centered at different samples (shown in
red) over the same set of samples. Matched samples are in the same color. Empty black circles indicate samples outside a neighborhood. Solid black circles
indicate samples within a neighborhood but unmatched. The black cross sample in (d) has i(so ) = 0, since it is unmatched with any si (i(si ) = 0) in (a) and (b).
The green sample in (d) has confidence i(so ) = 2

3 : in the three pairs of neighborhoods, there are two pairs (a) and (c) where each has an unmatched input
sample, which indicates there could be a missing sample in the output located at approximately the same location relative to its neighborhood center; the two
unmatched input samples are merged to generate the green output sample in (d).
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Fig. 8. Edge assignment example. This example illustrates how to solve Equation (16) for edge assignment by solving Equation (21) in a loop. Each step
(b)-(e) solves Equation (21) once. There are four samples and four potential edges (with i(e) > 0). The numbers near edges or samples indicate the
expected confidence of existence i(e) of the edges or the expected number of edges |E(s) | associated with samples (e.g. i(e2) = 0.8, |E(s2) | = 1.9).
In (a), we initialize all i(e) = 0 and sort all potential edges by its i from the largest to the smallest: e1 is the one with the largest i and e4 is the one
with the smallest. The optimization loops from e1 (b) to e4 (e) in decreasing i(e) values. The number below each E′e (i(e)) is its computed value (e.g.
E′e (i(e1) = 1) = |i(e1) − i(e1) | + |E(s1) − E(s1) | + |E(s2) − E(s2) | = |1 − 1 | + |1 − 1 | + |1 − 1.9 | = 0.9). The light green edges are not optimized with initial
values i(e) = 0. The dark green edges are optimized with i(e) = 1. The red edge is optimized with i(e) = 0. The light red indicates there is no edge after
optimization.

so and s ′o is

p̂(so , s ′o ) ≈ p(si ) − p(s ′i ). (13)

We use least squares [Ma et al. 2011] to estimate p(so ) by

argmin
{p(so )}

∑
so ∈O

∑
s ′o ∈n(so )



p̂(so , s ′o ) − (
p(si ) − p(s ′i )

)

2 + ∑
so<D

∥p̂(so ,D)∥2.

(14)

The second term in Equation (14) is the domain constraint to en-
courage output samples to stay within D, where p̂(so ,D) is the
shortest vector from so to the boundary of D, and so < D indicates
so is outside D.

Existence assignment. Our method adjusts the number of samples
within local regions during the synthesis process for better quality.
The number of samples is optimized via existence i assignment,
again via a voting scheme:

argmin
i(so )∈[0 1]

∑
si ∈{si }

|i(so ) − i(si )|
2 , (15)

where si runs through the set {si } we collect during neighborhood
matching, i.e. the corresponding input samples of an output sample

from overlapping input neighborhoods. i(si ) = 0 if so is not matched
with any si in a pair of matched input and output neighborhoods,
and i(si ) = 1 otherwise. Equation (15) computes the confidence
of existence i(so ) ∈ [0 1] of an output sample so . Every iteration
, we remove output samples so whose i(so ) < 0.5. The above as-
signment step is applied to samples that are already in the output
sample distribution. To add back missing output samples, we first
generate candidate samples, merge them as output samples, and
pick those with i(so ) > 0.5 as added output samples. The energy
in Equation (15) is not guaranteed to decrease immediately after
sample addition or removal, but it will generally decrease through
iterations. Please refer to Figure 7 for an example and Appendix A
for more algorithm details.

Edge assignment. We assign edges by optimizing the following
objective:

argmin
{i(eso s′o )∈{0,1}}

∑
{eso s′o }

��i(esos ′o ) − i(esos ′o )�� +∑
{so }

���|E(so )| − |E(so )|��� ,
(16)
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where the first term computes the difference between the actual
and expected edge confidences i(esos ′o ) ∈ [0 1]. i is the vote by
overlapping input neighborhoods on the same edge, computed using
least squares by replacing samples in Equation (15) with edges.
{esos ′o } is the set of edges that have i(esos ′o ) > 0, and there is no
edge between so and s ′o if i(esos ′o ) = 0. The second term computes the
differences between the optimized number of edges |E(so )| and the
expected number of edges |E(so )| connected to so . |E(so )| is similarly
computed by voting from overlapping output neighborhoods on the
same sample so :

argmin
|E(so ) |

∑
si ∈{si }

���|E(so )| − |E(si )|���2 . (17)

Basically, we compute the average of {|E(si )|}. In sum, the first
term is edge-centric while the second is sample-centric.

It is non-trivial to optimize Equation (16), where the optimization
variables {i(esos ′o )} are binary. Thus, we solve it in a greedy fash-
ion. We initialize all i(esos ′o ) = 0. We sort output edges {esos ′o } by
its expected confidence of existence i(esos ′o ), and optimize i(esos ′o )
greedily by looping over the sorted {esos ′o } in decreasing confidence.
For each esos ′o , we decide whether i(esos ′o ) = 0 or 1 by choosing the
one that minimizes Equation (16). In other words, the multivari-
ate optimization problem (Equation (16)) is optimized by solving
univariate optimization problems in a loop. By decomposing the
optimization variables in Equation (16) from a set of edges {i(esos ′o )}
to a single edge i(es∗os∗′o ) to be optimized and the rest, the univariate
version of Equation (16) can be written as:

argmin
i(es∗o s∗′o )∈{0,1}

E ′e + E
′′
e , (18)

where

E ′e

(
i(es∗os∗′o )

)
=
��i(es∗os∗′o ) − i(es∗os∗′o )��+���|E(s∗o )| − |E(s∗o )|��� + ���|E(s∗′o )| − |E(s∗′o )|��� , (19)

E ′′e

(
i(es∗os∗′o )

)
=

∑
{eso s′o }⊖es∗o s∗′o

��i(esos ′o ) − i(esos ′o )��+∑
{so }⊖{s∗o,s∗′o }

���|E(so )| − |E(so )|��� . (20)

Since E ′′e is a constant in Equation (18), it is equivalent to:

argmin
i(es∗o s∗′o )∈{0,1}

E ′e . (21)

Equation (21) can be solved with brute-force search. The search
space is 2 ({0, 1}). Figure 8 illustrates how to solve Equation (16) by
solving Equation (21) in a loop.

Orientation assignment. In the search step (Section 4.3.3), each
o(so ) is matched with a set of {o(si )} associated with input samples
coming from different input neighborhoods, and each entry o(so ) ∈
o(so ) has been matched with a o(si ) ∈ o(si ). The local orientation
attribute o(so ) is updated by a voting scheme among {o(si )}, where
{o(si )} could have different lengths across different si .
We optimize both dimension No and value of entries o in order. In

the input exemplar, the number of orientation entries No(si ) equals

o13 o23 o24

o11 o12 o21 o22 o31 o32

(a) {o(si )}

o1 o2

(b) o(so )

o3new = median(o13, o23, o24)
o2new = (o12+ o22 + o32)/3

o1new = (o11+ o21+ o31)/3

(c) Updated (b)

Fig. 9. Orientation assignment example. This example illustrates the orien-
tation assignment step when No(so ) is increased from 2 to 3. The output
sample (b) is matched with the three input samples (a). Matched orienta-
tions o (arrows) are visualized in the same colors. Unmatched inputs o are in
black. (c) shows the updated orientations of the output sample. The orange
onew1 and green orientations onew2 are updated by averaging matched input
orientations. The black output orientation onew3 is newly added by choosing
the median from three unmatched orientations (o13,o23,o24) in (a).

|E(si )|. Thus No can be computed like in Equation (17) and rounding
the result as integers. Essentially, we are trying to find an integer
No(so ) that is the closest to the arithmetic average of {No(si )}.

Similarly, we can update the values o(so ) in o(so ) using the same
voting scheme to Equations (15) and (17). A special case is when
No(so ) is updated to a new value (changing o(so ) vector length). In
this case, we will need to add or remove one or several entries to or
from the original o(so ). To remove an entry from o(so ), we pick the
one whose matched set of input votes {o(si )} has the largest vari-
ance. (We have experimented with another strategy that removes
o(so ) whose matched set of input votes {o(si )} has the least number
of entries, but have not found visible differences to the maximum
variance strategy above.) To add an entry to o(so ), we collect orienta-
tion entries {o′(si )} from the input samples that remain unmatched
to any orientation entries o(so ) of the matched output sample, and
add a new entry o(so ) into o(so ) as the median from the unmatched
set {o′(si )}. An example is illustrated in Figure 9. In the rare case
where we need to add more than one entry to o(so ), we randomly
choose from {o′(si )} after the median is used for the first add-on.

4.3.5 Hierarchical Synthesis. Instead of using a single-resolution
representation [Ma et al. 2011], we apply a hierarchical representa-
tion (Section 4.1.1) for multi-resolution synthesis.We first synthesize
the predictions at a coarse level using sparse representation, and
then reconstruct the patterns based on sparse samples. We continue
this process with a denser and denser pattern representation. Fig-
ure 5b shows an example of multi-resolution element representation.
For continuous structures, the sampling distance δ of continuous
pattern is gradually increasing with respect to the level of hierarchy.
During synthesis, we use multi-scale neighborhood sizes to keep
both large and local structures. The neighborhood size is gradually
reduced at different hierarchies. In our implementation, at each
hierarchy, there are 7 search-assignment iterations. See Figure 10
for an example.

4.4 Pattern Reconstruction
The reconstruction step takes a synthesized pattern representation
as input to generate output patterns that may consist of discrete
elements and continuous structures.
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Fig. 10. Hierarchical synthesis visualization. The hierarchical synthesis proceeds from the coarsest (first level) to the finest levels (third level), with upsampling
sample representations (Figure 5b). The hierarchical synthesis gradually refines the pattern from large to small scale structures. Note that the initialization has
fewer elements than required (top row), hence our existence optimization adaptively controls the total number of elements.

4.4.1 Discrete Elements. For discrete elements, each sample is uniquely
associated with an element. The reconstruction is to transform the
element shapes by treating samples as control points. Specifically,
we assume similarity transform to reconstruct the elements.

4.4.2 Continuous Structures. We have synthesized a graph whose
sample positions and edge connections represent the topology of
the output (Section 4.3). However, these edges are piecewise lin-
ear, and they thus capture only connectivity/topology, but not
shape/geometry information. The original continuous patterns can
be composed of smooth paths (e.g. quadratic Bézier curves). There-
fore, we need to reconstruct paths from the graph samples and edges.
The samples are used as control points of Bézier curves.

Next, we talk about how to identify which sample and which
edge are included within which path. This process relies on the
synthesized sample orientation attributes o.

Samples with only one neighbor are unambiguous and thus only
included within one path. Samples with only two neighbors could
be included in one path (all blue samples with two neighbors in
Figure 11) as path samples, or two paths as junction samples (e.g. the
yellow sample in Figure 11a). Samples withmore than two neighbors
are junction samples (e.g. the red sample in Figure 11d) that are
included in multiple potential paths.
To disambiguate these cases, we examine a sample’s local orien-

tations o(s). Since o ∈ o(s) should be tangent to the sample’s local
path, if a sample s has a pair of orientations o(s) that are almost
opposite (8π/9 < absolute orientation difference < 10π/9), it will
suggest that the sample is included inside a path as opposed to at
the ends of a path. Therefore, there are three steps to reconstruct
a pattern without ambiguity. First, we identify pairs of local path
orientations o(s) (if any) that are opposite (e.g., a pair of arrows
associated with 2-neighbor blue samples in Figures 11a and 11d, or
the orange and green ones associated with the red junction sample
in Figure 11d). Second, we match local orientations o(s) with edges

e ∈ E(s) connected to the sample using the Hungarian algorithm
by minimizing the sum of absolute difference between local orienta-
tion and edge angles. The arrows and graph edges in Figures 11a
and 11d with the same colors are matched. Third, we generate a path
by including edges that are connected together and matched with
opposite orientations. A Bézier curve is generated by interpolating
samples along a path. This reconstruction strategy using o can help
preserving the original curve shapes, as demonstrated in Figure 15.

5 EVALUATION
We evaluate our method with sample results, ablation studies, and
comparisons with existing art. We will make our code repository
[Tu 2020] public to facilitate future research.

5.1 Results
Our method can automatically synthesize satisfactory results for
a variety of patterns without user intervention, as exemplified in
Figures 1, 12 and 13 and our (full) results in Figures 2, 10 and 14 to 16.
However, like existing techniques, our method might not always
produce what users would like to have, and some artifacts can be
visible in local regions (such as unfinished or dangling components
in Figure 1a and Figure 2g or inconsistent curvatures in Figure 10k
bottom) and global structures (such as the regular and warped grids
in Figures 12h and 12p, the rectangular blocks in Figure 12l, and the
straight lines in Figures 1e and 12t). For further quality improve-
ment and customization, users can also interactively edit the system
suggestions via our system interface, as demonstrated in Figure 13.
Unless otherwise noted, all our results are produced with three hi-
erarchies using neigborhood radii r ∈ {60, 50, 40} with sampling
distance δ ∈ {40, 30, 25}, while the longer side of bounding box of
exemplars are varying between 250 and 500. Our method is robust
to variations of neighborhood radii. See Appendix B for more details
about our parameter settings.
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(a) 2-neighbor s (b) 2 paths from (a) (c) 1 path from (a) (d) >2 neighbor s (e) Recon from (d) (f) Other possible reconstructions from (d)

Fig. 11. Curve reconstruction from a graph using orientation attributes. If we only consider the different statuses of the yellow sample in (a), there are two
possible reconstructions (b)(c), depending on whether it is a junction (b) or path (c) sample. If we only consider the different statuses of the red sample in (d),
there are four possible reconstructions (e)(f), depending on the red sample is included within which two or three paths. For the yellow (in (a)) and red samples
(in (d)), we decide the reconstruction by examining its associated local orientation attribute and the fact a pair of local orientations of a sample should be
opposite if the sample is included within the path. Our algorithm will reconstruct (b) from (a) and (e) from (d).

(a) Zentangle (b) (c) Diffusion (d) (e) Wet flow (f) (g) Brick wall (h)

(i) Fence (j) (k) Blocks (l) (m) Heart (n) (o) Curve grid (p)

(q) Isocontour (r) (s) Circuit (t) (u) Chain (v) (w) Fabric (x)

Fig. 12. Automatic synthesis results by our method.Within each pair of images, the input exemplar is smaller and shown on the left, the automatic synthesis
result is bigger and shown on the right.

5.2 Ablation Study
Although we use patch-based methods for initialization in our im-
plementation, our algorithm is robust to different initial conditions
(Figure 14), even if the initial sample distribution is randomly dis-
tributed (white noise). Figure 15 is the ablation study for the ori-
entation attribute o. Figure 16 shows other components of our al-
gorithm. Without the edge term (Equation (5)) or robust matching

(Section 4.2.3) in the search step, our algorithm produces lower qual-
ity results with obvious artifacts. Without existence assignment (the
third paragraph in Section 4.3.4), the algorithm cannot automatically
adjust the number of samples within local regions and can produce
empty space or extra broken curves.

5.3 Comparison to Previous Methods
To our knowledge, there is no previous example-based method that
can generate the types of patterns we target. The sample-based
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Uneven
bricks

Auto User 16 + 11 Edited Zigzag Auto User 11 + 2 Edited

Prisma Auto User 5 + 28 Edited Waves (small) Auto User 21 + 0 Edited

Fig. 13. Automatic synthesis and user-assisted results.We count the number of user operations needed for correcting artifacts. Red indicates the number of
rejection and blue the number of manual path drawing.

Voronoi

Tree Patch-based initialization Patch-based final output Random sample initialization Random sample final output

Fig. 14. Algorithm robustness to different initialization. Our algorithm can generate similar results with both patch-based or random initialization.

methods in [Ma et al. 2011; Roveri et al. 2015; Tu et al. 2019] are
the most related. We compare against [Ma et al. 2011; Roveri et al.
2015] and a state-of-art point distribution synthesis method in [Tu
et al. 2019] which applies convolutional neural networks to preserve
both local and global structures. As shown in Figure 2, our method
can produce better spatial sample distributions than [Ma et al. 2011;
Roveri et al. 2015; Tu et al. 2019]. Note that we compare only sample

distributions in Figure 2 since it is unclear how to reconstruct contin-
uous curve patterns from synthesized samples without connectivity
[Ma et al. 2011; Roveri et al. 2015; Tu et al. 2019].
We also enhance [Ma et al. 2011] for comparisons, by incorpo-

rating it with the sample connectivity (Figure 5d) and edge as-
signment step (Equation (16)), but without the edge set difference
(Equation (5)) and robust matching (Section 4.2.3) in the search
step, as well as without the existence assignment step (the third
paragraph in Section 4.3.4). As shown in Figure 17, our method
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(a) Crocodile skin (b) With o

(c) Zoom-in of (b)

(d) Without o (e) Flame (f) With o

(g) Zoom-in of (f)

(h) Without o

Fig. 15. Ablation study for o. The orientation attribute o is useful to faithfully recover curve appearance in the exemplars. In the "crocodile skin" example, the
curves should be smooth at junction; in the "flame" example, the curves should be sharp at the flame tip.

Fish scale

Roof tiles Without edge search Without robust matching Without existence assignment Full result

Fig. 16. Ablation study.Without using edges (Equation (5)) in the search step (the second column) or robust matching (Section 4.2.3) that considers outliers
(the third column), the algorithm produces lower quality results. Without existence assignment (the third paragraph in Section 4.3.4), the algorithm produces
broken curves and empty space due to outliers and missing samples (the forth column). Our results are shown in the last column.

can generate better results than the enhanced version of [Ma et al.
2011]. Unlike for [Ma et al. 2011], we are unable to enhance [Roveri
et al. 2015; Tu et al. 2019] due to the lack of one-to-one sample
correspondences which are needed for the edge assignment step.

6 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK
Repetitive patterns have many applications, whose creation has
been a main focus of research in computer graphics and interactive
techniques. This work focuses on methods and interfaces to help
users author continuous curve patterns. Analysis and results of
diverse patterns have demonstrated the promise of our approach.
Like other neighborhood-based texture/pattern synthesis meth-

ods, our algorithm also assumes local properties and thus cannot
capture global structures and may introduce stochastic variations,

such as broken and distorted curves, as shown in Section 5.1. These
artifacts can be reduced by other improvements, such as bidirec-
tional similarity, additional feature masks, and smart initialization
[Kaspar et al. 2015].
Our current reconstruction algorithm is based on Bézier curve

interpolation, which might not preserve the exemplar curves. One
possibility is to treat each curve segment like a discrete element
and reconstruct via sample-based warping [Hsu et al. 2020; Ma et al.
2011], while ensuring that curve segments sharing common samples
are well connected.
Our current algorithm treats discrete elements and continuous

structures separately and thus might not preserve identifiable el-
ements within continuous structures, as exemplified in Figure 18.
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Waves (large) Roof tiles

Fish scale Enhanced [Ma et al. 2011] Ours Wood ring Enhanced [Ma et al. 2011] Ours

Fig. 17. Comparison of our algorithm with enhanced [Ma et al. 2011].We compare our methods to an enhanced version of [Ma et al. 2011] that incorporates our
ideas, including the sample connectivity and edge assignment.

(a) Input (b) Output (c) Input (d) Ouptut

Fig. 18. Failure case. Our algorithm fails to preserve the identifiable DNA-
segment and tree-leaf elements within the continuous structures.

A potential future work is to find a unified representation and ap-
proach for both discrete and continuous patterns.
The pattern synthesis requires nearest neighborhood searching

for output samples, which can become computationally expensive
for large outputs. This neighborhood searching process can be read-
ily parallelized [Huang et al. 2007].

We focus on curves as the first step to handle continuous vector
patterns. A next step is to incorporate more vector graphics features
as parts of the sample/edge attributes, such as color and thickness,
as well as higher dimensional primitives including 2D regions and
3D volumes [Takayama et al. 2010; Wang et al. 2011, 2010]. More
controls can also be added to facilitate more diverse authoring effects
such as local variations in scales and orientations [Hsu et al. 2020].
In addition to optimizing pattern appearance as in this work, adding
mechanical structures constraints can facilitate the application of
curve structures for rapid manufacturing [Bian et al. 2018; Chen
et al. 2017, 2016; Li et al. 2019; Zehnder et al. 2016; Zhou et al. 2014].
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A EXISTENCE ASSIGNMENT
The algorithm for generating additional samples is shown in Algo-
rithm 1.

1: function GenerateNewOutputSamples({n(si ),n(so )})
2: {sco } ← ∅ {candidate sample set}
3: {S} ← ∅ {S is a cluster that contains some candidate samples}
4: {so } ← ∅ {new output sample set}
5: for n(si ),n(so ) ∈ {n(si ),n(so )} do
6: for s ′i ∈ n(si ) do
7: if s ′i is unmatched then
8: Generate a candidate sample sco with p(sco ) = p(s ′i ) −

p(si ) + p(so ) and other attributes are the same to s ′i
9: {sco } ← {s

c
o } ∪ s

c
o

10: end if
11: end for
12: end for
13: for sco ∈ {sco } do
14: {Generate clusters from the candidate sample set by greed-

ily looping over all candidates; more advanced clustering
technique can be applied to replace this step}

15: Find the S within {S} with nearest center to sco
16: if Distance(S, sco ) < 0.5δ then
17: {Distance(S, sco ) computes the spatial distance between

the center of S and sco }
18: S ← S ∪ sco
19: else
20: S′ ← ∅

21: S′ ← S′ ∪ sco
22: {S} ← {S} ∪ S′

23: end if
24: end for
25: for S ∈ {S} do
26: create a new so with averaged sample positions and attributes

by merging all {sco } within S
27: i(so ) ←

#S
#overlapping n over so {existence assignment}

28: if i(so ) > 0.5 then
29: {so } ← so
30: end if
31: end for
32: return {so }

Algorithm 1. Generating new output samples in existence assignment.

The candidate samples are generated from pairs of n(si ) and
n(so ) (lines 5-12 in Algorithm 1). In a pair of n(si ) and n(so ), if there
is an unmatched input sample s ′i in n(si ) (line 7), it will indicate
the potential lack of an output sample, whose global position is
p(sco ) = p(s ′i ) − p(si ) + p(so ) located within n(so ), and attributes
are the same to s ′i (line 8). The algorithm loops over all pairs of
neighborhoods, each neighborhood pair may or may not produce
new candidate samples. All these samples sco form a candidate sample
set {sco }. We group {sco } into clusters {S} (line 13-24) by assigning
a sample to its nearest cluster S with distance between sco and the
center of S smaller than 0.5δ or otherwise create a new cluster

S′ using the sample. For each cluster S ∈ {S} (line 25-31), we
merge all its candidate samples {sco } ∈ S as one output sample so
by averaging their position and attributes using the same way as in
the assignment step (Section 4.3.4). The existence of so is assigned
as the ratio of the number of candidates within S over the number
of overlapping n over the position of so . For the sake of explanation,
assume i(so ) = 1, it means all n overlapping over so produce one
candidate sample on average, which suggests there could be missing
samples, around so . Finally, so with i > 0.5 is added into the output
sample distribution every iteration.

B PARAMETERS

Table 2. Parameters. From left to right: neighborhood radii and sampling
distances from lower to higher hierarchies. The parameters in the bottom
part of the table share default values. Input size is bounding box size of
input exemplar.

r δ input size
Figure 12h {50, 40, 30} {20, 15, 10} 350 × 200
Figure 12p {60, 50} {40, 30} 300 × 300
Figure 1e {40, 30, 20} {20, 15, 10} 250 × 250
Figure 13j {60, 50, 40} {40, 30, 30} 250 × 250
Figure 12f {50, 40, 30} {30, 20, 10} 300 × 350
Figure 1h

...
...

400 × 400
Figure 16e 400 × 300
Figure 12t 500 × 400
Figure 15b 350 × 300
Figure 12d

...
...

350 × 200
Figure 12x 300 × 300
Figure 12j 200 × 300
Figure 15f

{60, 50, 40} {40, 30, 25}

300 × 300
Figure 12n 200 × 300
Figure 12r 400 × 400
Figure 14h 350 × 400
Figure 16j

...
...

400 × 250
Figure 1a 300 × 250
Figure 1d 350 × 300
Figure 14c 350 × 250
Figure 17c 500 × 300
Figure 13n

...
...

400 × 200
Figure 17l 250 × 350
Figure 12v 250 × 400
Figure 12b 300 × 300
Figure 13f 300 × 250

Table 2 lists the parameters for the results shown in the paper.

C PERFORMANCE
Our current implementation in C++ is unoptimized. It takes about
160 seconds to synthesize a pattern with about 750, 1000, 1300 out-
put samples and 30, 30, 20 samples on average within neighborhoods
at each hierarchy, on a desktop with AMD Ryzen 9 3950 X 3.49 GHz
16-core processor and 32 GB RAM. The major computational burden
is on the neighborhood searching process (Section 4.3.3). The com-
putational complexity of neighborhood searching mainly depends

ACM Trans. Graph., Vol. 39, No. 6, Article 168. Publication date: December 2020.
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on the number of samples and neighborhood radius. To compute the
similarity and sample matching between a pair of neighborhoods,
the Hungarian algorithm [Kuhn 1955] has complexityO(N 3

n) where
Nn is the number of samples within a neighborhoood (assume all in-
put and output neighborhoods have same number of samples). The
patch match algorithm [Barnes et al. 2009] is composed of two al-
ternating steps: propagation and random search. In an optimization
step, there are the anOImax neighborhood matching computation
where a is a constant (in our implementation a ≈ 10) which is re-
lated to the number of neighboring samples to a sample used in the
propagation step and the range of random search, nO is the total
number of output samples, and Imax is the maximum number of
patch match iteration. The complexity of an optimization step is
thus O(nON 3

n). Our algorithm has no more than 3 hierarchies and
each hierarchy need about 7 steps. The lower hierarchy has less
samples but a larger neighborhood radius (Section 4.3.5).

D TEXTURE SYNTHESIS

Exemplar [Cornet and
Rouquier 2004]

[Wei 2016] Ours

Fig. 19. Comparison of our algorithm to texture synthesis. Texture synthesis
methods need additional vector-pixel conversions and need to process all
pixels instead of just samples around patterns.

Figure 19 shows the texture synthesis results by graph cut [Kwa-
tra et al. 2003] (using the implementation in the GIMP Texturize
Plugin [Cornet and Rouquier 2004]) and multi-resolution patch-
match (using the implementation in [Wei 2016] with guidance chan-
nels [Kaspar et al. 2015]). As shown, pixel-based texture synthesis

might not preserve continuous structures as well as our vector-
based method. These methods also need additional vector-pixel
conversions and need to process all pixels instead of just samples
around patterns. If standard texture synthesis methods are applied
for vector patterns, the rasterization, synthesis, and vectorization
process can introduce extra quality degradation and computation
overhead, and thus might not be practical for interactive authoring
as we present in the supplementary video.
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