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ABSTRACT
Toothbrushing plays an important role in daily dental
plaque removal for preventive dentistry. Prior work has
investigated improvements on toothbrushing with sensing
technologies. But existing toothbrushing support focuses
mostly on estimating brushing coverage. Users thus only
have indirect information about how well their toothbrushing
removes dental plaque. We present LumiO, a toothbrush that
offers users continuous feedback on the amount of plaque on
teeth. Lumio uses a well-known method for plaque detection,
called Quantitative Light-induced Fluorescence (QLF). QLF
exploits a red fluorescence property that bacterium in
the plaque demonstrates when a blue-violet ray is cast.
Blue-violet light excites this fluorescence property, and a
camera with an optical filter can capture plaque in pink. We
incorporate this technology into an electric toothbrush to
achieve improvements in performance on plaque removal
in daily dental care. This paper first discusses related
work in sensing for oral activities and interaction as well
as dental care with technologies. We then describe the
principles of QLF, the hardware design of LumiO, and
our vision-based plaque detection method. Our evaluations
show that the vision-based plaque detection method with
three machine learning techniques can achieve F-measures
of 0.68 – 0.92 under user-dependent training. Qualitative
evidence also suggests that study participants were able to
have improved awareness of plaque and build confidence on
their toothbrushing.
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Applications
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INTRODUCTION
Maintaining a healthy oral environment is important to prevent
cavities and periodontal diseases. Dental plaque is a colorless
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(or often pale-yellow-colored) biofilm that grows on teeth and
along gum lines. It contributes to many oral diseases including
the two above, and daily removal of plaque is critical to their
prevention. Toothbrushing is an effective daily dental care
method to remove plaque if it is performed properly. However,
it is difficult for users to know how successfully they have
removed plaque as they brushed their teeth without help of
special dental care products or checks by a professional dentist.

This problem stems from the fact that users do not necessarily
have direct feedback on the status of plaque removal while
toothbrushing. There exist several ways to check the existence
of plaque available for daily toothbrushing at home. Plaque
disclosing products (e.g., tablets and solutions) are perhaps the
most common and inexpensive approach. They stain plaque
in deep red or blue to make it more visually identifiable.
However, it can be demanding to use these products every
time before toothbrushing. Users also have to use a mouth
mirror to identify plaque at the inner part of the mouth (e.g.,
molars). This is not desirable because users may have to check
repeatedly during toothbrushing.

Figure 1: LumiO, a plaque-aware toothbrush. (a) The LumiO
toothbrush. (b) An example intraoral image LumiO captures.
The sensing component consists of blue-violet light LEDs and
a camera with an optical filter to excite the QLF property.
The pink reflection indicates the locations of plaque. (c)
A vision-based plaque detection result using SVM. The red
points represent areas recognized as plaque.
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Bacteria in plaque has a fluorescent property, known as
Quantitative Light-induced Fluorescence (QLF) [3, 4, 16].
In QLF, blue-violet light causes red or pink reflection by
bacteria. There exist QLF-enabled intraoral cameras for
non-professional use. However, they are not yet commodity
devices in general families despite their affordable cost
(roughly 100 – 150 USD as of March 2016). Unfortunately,
these devices suffer from the same issue as plaque disclosing
products and mouth mirrors. Users would have to switch a
brush and camera back and forth until they remove plaque
successfully. This switching is not only a burden for
many users, but also make feedback about plaque removal
discontinuous. We consider that this discontinuous feedback
cycle is a key problem to be solved.

To provide continuous feedback on removal of plaque during
toothbrushing, we create LumiO, an electric toothbrush
that embeds a blue-violet light intraoral camera in its head
(Figure 1a). LumiO continuously monitors plaque by using
QLF. The LumiO camera system captures intraoral images,
and performs a vision-based algorithm to identify how much
plaque covers the teeth that users are currently brushing
(Figure 1b and 1c). The system then provides users with
feedback about whether they have brushed well or not by
changing the intensity of the toothbrush head vibration.
When users successfully remove plaque, the device weakens
vibration, and they will be encouraged to brush other parts of
the teeth.

This work examines the feasibility of integration of a
toothbrush and OLF-enabled intraoral camera for providing
improved awareness on plaque removal in daily dental care.
More specifically, it offers three following contributions:

• The hardware design of a plaque-aware toothbrush:
Our work presents the integration of a QLF-enabled
camera component into a head of an electric toothbrush.
Our hardware implementation does not include special
production process, and is ready for scaling.

• The implementation of a vision-based plaque detection
method: We develop a vision-based approach to identifying
plaque in intraoral images taken by the LumiO device. It
detects the amount of plaque while toothbrushing with
LumiO, and provides feedback to users.

• System and user evaluations of LumiO: To validate our
design of LumiO, we conducted a small-scale evaluation.
The results confirm the feasibility and benefits of a
plaque-aware toothbrush.

In this paper, we first discuss prior work on sensing for oral
activities and interaction, commercially-available oral care
technologies, and related literature on toothbrushing support.
We then explain the principles of QLF and its limitations. We
present the hardware design and vision-based plaque detection
method of LumiO. We report our small-scale laboratory
evaluation for validating the design of LumiO, and discuss
possible improvement for future work.

RELATED WORK

Oral Activity and Interaction Sensing
Oral activities are involved in various human actions, such
as eating, speaking, and breathing. Thus, systems can infer
user’s context, intention, or their activity status by oral
sensing. Amft et al. [1] used the combination of a surface
electromyography (EMG) and a microphone placed on a user’s
neck to detect swallowing activities for dietary tracking. Their
sensor was able to distinguish swallowing dry and wet food
at approximately 85% accuracy. Yatani and Truong created
BodyScope [18] to track internal sound from the throat with
a microphone attached to a user’s neck. In user-dependent
training, their sensor was able to classify twelve different
activities at an accuracy of 79.5% Rahman et al. further
improved the hardware design of a wearable acoustic sensor
and demonstrated more robustness than BodyScope [13].

Some sensors are designed to be placed directly inside the
user’s mouth. Kim et al. developed an intraoral sensor to detect
bruxism [5]. They embedded a pressure sensor in a bite guard,
and confirmed its feasibility. Li et al. created a small sensing
component with an accelerometer that can be embedded in a
tooth [10]. Their evaluation revealed that a user-dependent
SVM classifier achieved an F-measure of 93.8% in recognizing
oral activities. But their results also showed that the accuracy
decreased to 59.8% under user-independent training

Prior work has also exploited the intraoral space for creating
novel interaction. Saponas et al. demonstrated the feasibility
of utilizing the movements of a user’s tongue for interaction
by using a custom-made orthodontic dental retainer equipped
with optical sensors [14]. Slyper et al. created a tongue joystick
with which an actor inside can control her articulated head
costume [15]. These projects suggest potentials of intraoral
sensing for designing new forms of interaction.

The research above suggests the richness of the field in
intraoral activity recognition and interaction design. Our work
differs from the prior work discussed in this section because
this work focuses on an oral care application.

Commercially-available Oral Care Technologies
Smart toothbrushes (toothbrushes with sensing technologies)
recently become commercially available. For example,
Braun is going to sell a smart toothbrush1 that equips a
pressure-sensitive brush head as well as a position and
orientation sensor on the holding part. Users can pair
the toothbrush with their smartphone via Bluetooth. The
smartphone then uses front cameras to perform video
recognition to determine which part of teeth users are brushing.
It also display users’ brushing performance on the screen.
Brushing too hard can hurt teeth, and applying right pressure
is a key for successful toothbrushing. The sensors in this
toothbrush also monitor the level of pressure users are
applying. The power toothbrush stops vibration when pressure
becomes too intense.

Other commercially-available toothbrushes offer mobile game
apps to encourage children’s toothbrushing. Examples include
1Braun, the Oral-B Genius http://oralb.com/en-us/genius
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Kolibree2, Beam3, and PlayBrush4. These devices are
self-contained or an attachment to ordinary toothbrushes.
Their sensing capability is mostly limited to motions, and
differs from this work.

Intraoral scanners are used in the dental clinics or hospitals
to construct a 3D model of the patients’ teeth and diagnose
oral cavities. Most of these scanners comprise a camera and a
depth sensor [11]. Such sensors might provide unique values
for daily dental care, but they do not directly measure plaque
on teeth, which is our primary goal to achieve.

Qscan5 is a mobile device that utilizes the QLF property. The
device has a yellow-filtered window at its center and casts
blue-violet light. Although this device is easy to use, users are
able to only see plaque at front teeth (i.e., incisors and canines).
Gum lines along with molars are also locations where plaque
tends to be developed, and additional support is still necessary.

Toothbrushing Support
There are several projects related to applications with
interactive toothbrushes in the context of ubiquitous
computing and Human-Computer Interaction. We categorize
them into two research focuses: toothbrushing coverage
estimation and toothbrushing education.

Toothbrushing coverage estimation means assessing what
portion of the teeth users have brushed and how well. Lee
et al. [8, 9] added an accelerometer and a magnetic sensor
to a toothbrush. Their device recognizes its position and
orientation to estimate the location where the user is brushing.
Their study confirmed that such enhanced toothbrushes can
potentially support professionals for educating patients’ daily
dental care. Korpela et al. [6] used toothbrushing sounds to
estimate brushing coverage. A smartphone placed next to
the sink records audio signals, and performs hidden Markov
models (HHMs) to detect where users are brushing. They
divided the mouth into four regions: the inner surface of
front teeth (FI), the outer surface of front teeth" (FO), the
inner surface of back teeth (BI), and the outer surface of
back teeth (BO). They also defined rough and fine brushing
strokes: “rough” indicates that a stroke is too forceful while
“fine” represents smaller, lighter brushing. By combining the
regions and stroke types, they defined seven classes (including
a not-brushing status but excluding FI-Rough and BI-Rough
due to an insufficient amount of data). Their classification
results achieved an accuracy of 78.3 %. Their study also
showed that the accuracy varied drastically by various factors,
such as the distance between participants and the smartphone.

Dentists recommend different practices on toothbrushing
though they are not well shared among general user
populations. Thus, toothbrushing education is one of the
dentists’ increasing interests, and there have been several
research projects to support this. Lee et al.’s work also aimed
at providing support for toothbrushing education [8, 9]. The
2https://www.kolibree.com/en/
3https://www.beam.dental/tech
4http://www.playbrush.com/en/
5http://www.qraydental.com/qlf-producten/qscan/
overzicht-qscan

Figure 2: The Miharu-kun device, a commercially-available
intraoral camera with QLF functionality. (a) A view of the
front. (b) A zoomed view of the camera part (RGB mode).
(c) A captured intraoral image in the RGB mode. (d) A
zoomed view of the camera part (QLF mode). (e) A captured
intraoral image in the QLF mode. The pink portions are plaque
(manually annotated with white arrows).

system visualizes the position and orientation of a toothbrush
in a virtual 3D space by using smart toothbrushes developed
by themselves. Chang et al. [2] created an educational system
to motivate kindergarten children to toothbrush by introducing
a gamification concept. The system has an external camera
capturing kids’ toothbrushing to assess their performance. It
also includes a monitor displaying a cartoon of teeth filled
with dirt. As kids toothbrush sufficiently well, cartoon dirt
disappears, and clean white teeth appear.

As seen above, existing research on toothbrushing
performance assessment mostly relies on coverage estimation.
Sufficient brushing coverage and duration can be associated
with good plaque removal [7]. However, brushing coverage
does not offer direct information about plaque removal. We
hypothesize that users would gain more solid confidence on
their toothbrushing by having such feedback. To this end,
we determine to investigate the design of a plaque-aware
toothbrush and its viability.

QUANTITATIVE LIGHT-INDUCED FLUORESCENCE
LumiO exploits Quantitative Light-induced Fluorescence
(QLF) in its hardware design. QLF utilizes the natural
fluorescence of teeth to discriminate between caries and sound
enamel [16]. The caries lesion spots have weaker fluorescence
radiance than that of surrounding sound enamel areas. QLF
uses light in a wavelength around 405 nm (which is blue-violet)
to excite yellow-green fluorescence in a range above 520
nm. Thus, an intraoral camera with a yellow high-pass filter
(λ > 520 nm) captures sound enamel in green.

https://www.kolibree.com/en/
https://www.beam.dental/tech
http://www.playbrush.com/en/
http://www.qraydental.com/qlf-producten/qscan/overzicht-qscan
http://www.qraydental.com/qlf-producten/qscan/overzicht-qscan


Figure 3: The LumiO hardware construction. (a) The LumiO device. (b) The camera used in the LumiO hardware. This component
consists of the camera head and main board. (c) We modify the camera by attaching an optical high-pass filter to its lens and
replace the lighting components with blue-violet LEDs. (d) We solder the camera directly onto FFCs and waterproof it with resin.
(e) (From left to right) An intact Oral-B ProWhite brush head, a head with its hair removed, and only the brush part. (f) The
toothbrush head with the camera board placed between two modified ProWhite brush head (viewed from the side). (g) The back of
our modified Oral-B electric toothbrush. We solder wires on electrodes to control the power switch. (h) A zoomed view of the
camera part. The camera is completely isolated from the brush, and stays still even when it is activated.

There are commercially-available intraoral cameras that have
QLF functionality. Miharu-kun (RF Co., Ltd, Figure 2) is one
example of those. Its camera has the resolution of 640 × 480
pixels with the focal length of 10 – 20 mm. Figure 2c and 2e
compares pictures taken with Miharu-kun in the normal RGB
and QLF modes. The camera in the QLF mode captures the
area of plaque although it is not a high-end sensor. We thus
confirmed that the integration of cameras in these devices into
a toothbrush can serve our purpose.

Clinic trials also confirm that QLF excites red autofluorescence
by plaque [4]. Coulthwaite et al.’s study [3] found that
this fluorescence attributes to certain species of bacteria
in plaque. Heinrich et al. [4] suggested using QLF
as an evaluation method for plaque removal. In QLF,
an enamel, plaque, and gingival area brights green, red
and brown, respectively. This spectral characteristic is
beneficial in a vision-based classification method because it
is straightforward to distinguish teeth and plaque. A common
metric to quantify plaque on teeth in a vision-based approach is
a Plaque Percent Index (PPI) [12]. It is defined as the number
of red pixels divided by the total area of the teeth:

PPI =
# of plaque (red) pixels

# of teeth (red and green) pixels
(1)

Our LumiO system uses a variant of this PPI to quantify plaque
on teeth. We will explain this in detail later.

Although QLF is a promising technique, it has limitations
for accurately measuring the amount of plaque. Van et
al. [17] compared images taken under QLF with or without
plaque disclosure. They revealed that only the portion of the
plaque around the gingival margin and interproximal areas

showed red fluorescence. Their study found that the disclosed
area was approximately 62% larger than the red fluorescence
region. They further concluded that a mature biofilm mainly
causes the red autofluorescence. In other words, relatively
young plaque on the tooth surface does not always show
red fluorescence without disclosure. However, QLF without
disclosure is still useful in detecting developed plaque and it
can inform users of where they should brush carefully. We
thus decided to investigate the feasibility of incorporating the
QLF functionality into a toothbrush.

LUMIO HARDWARE
Figure 3a shows our current LumiO hardware prototype.
The LumiO hardware comprises a camera, toothbrush head,
electric toothbrush body, and a microcomputer. We explain
each component in detail.

Intraoral Camera
An intraoral camera is the main sensor in LumiO, and has to
satisfy the following requirements:

• Small enough to be integratable into a toothbrush head,

• Short focal length, and

• Low-cost for production.

Figure 3b shows the camera device (GDT MZ-USB001
Endoscope) we use in the current LumiO prototype, and Table
1 describes its specifications. As shown in Figure 3b, the
camera consists of two boards: the main and camera parts.
The main board has integrated circuits to convert the signals
from the camera, and it connects to an external computer
through USB. The camera board has a CMOS sensor covered



Resolution 640x480
Color depth 24 bits
Focal length 2 – 10 cm (best at 6 cm)
Angle of view 60°
Frame rate 10 fps
Operating voltage 5V
Power 120 mA / 30µW
Cost 6.99 USD

Table 1: Specifications of the camera used in LumiO.

by a black plastic casing with an adjustable lens. Four white
LEDs are placed around the camera.

We make two modifications on this camera for building the
Lumio prototype. To retarget this camera for QLF, we replace
the white LEDs with Bivar SM0603UV-400 which can emit
blue-violet light in a wavelength of 405 nm. We also attach a
sheet of an high-pass optical filter (λ > 520 nm) to the top of
the plastic casing over the lens.

We extend the connection between the main and camera board
with 10 cm of flexible flat cables (FFC, Figure 3d). This
allows for the separation of the main and camera board. We
then waterproof these boards. We create a silicon mold to
make a transparent, waterproof cover for the camera with
resin. This cover protects the camera and LEDs while not
occluding the light and vision (Figure 3d). We cover the main
board and FFCs together with a heat-shrinking tube, and fill
the gap between the tube and cables with hot glue.

Toothbrush head
Our LumiO device embeds the camera in the center of the
toothbrush head. We modify a Braun’s Oral-B ProWhite to
create the LumiO toothbrush head. The Oral-B ProWhite
toothbrush head has brushes at the periphery and a small
rubber component at the center, designed for holding
toothpaste (Figure 3e, left). When the connected electric
toothbrush body turns on its motor, the head rotates the bottom
ellipse plate back and forth. Thus, if we simply attach the
camera to this head, it will also vibrate, causing substantial
blur in captured images.

To fix the camera, we combine two Oral-B ProWhite
toothbrush head. We remove the rubber component in one
toothbrush head in order to create a space for the camera
(Figure 3e, center). We also modify another toothbrush head
so that it only has the bottom ellipse plate. We attach the
camera to the back of this toothbrush head, and cover it with
the other head. We then place a supporting part to connect the
two heads (Figure 3f). In this manner, the LumiO toothbrush
head can still vibrate while the camera remains at the center.

Figure 4 presents an example image captured by LumiO.
Figure 5 shows an example of intraoral images captured
by LumiO and Miharu-kun. Due to its longer focal length,
captured images by LumiO are less clear than Miharu-kun.
However, as seen in this figure, LumiO captures pink reflection
by plaque. Although we did not perform a quantitative
comparison of captured intraoral images between LumiO and

Figure 4: An example image captured by the LumiO prototype.
The regions reflecting in pink are plaque (manually annotated
with white arrows).

Figure 5: A comparison of captured intraoral images between
(a) LumiO and (b) Miharu-kun. Although the image brightness
is different, LumiO captures pink reflection by plaque.

Miharu-kun, we concluded that the current LumiO prototype
demonstrates a QLF capability sufficiently for our purpose.

Toothbrush body and plaque feedback mechanism
The current LumiO prototype uses Braun’s Oral-B Electric
Toothbrush Plaque Control DB4510NE for its body.
DB4510NE has no special sensor or functionality, and users
can switch on and off its vibration motor with a button on
the surface. We solder wires on two electrodes connected to
the switch (Figure 3g) to bypass to an Arduino Pro Mini. We
use Pulse Width Modulation to control the facade of vibration
strength of the toothbrush. After trials, we found that the
minimum duty cycle to successfully activate the toothbrush
head is 23%. The LumiO device vibrates at the highest
intensity until the area of plaque in the captured image is
below the pre-determined threshold. It otherwise activates the
motor at the minimum duty cycle. In this way, the LumiO
device can offer haptic feedback about plaque on the teeth
users are currently brushing. We designed the feedback to
be self-contained so that users would not need to have any
additional device.



VISION-BASED PLAQUE DETECTION
The LumiO system analyzes intraoral images from the camera
and assesses the amount of plaque on teeth. The system uses
this analysis result to determine the vibration strength. Thanks
to QLF, a vision-based approach can easily identify plaque
and enamel by their colors. We use different machine learning
techniques (Naïve Bayes (NB), k-nearest neighbor (kNN), and
Support Vector Machine(SVM)) for recognizing them, which
we explain in a later section.

After identifying plaque and tooth regions, we calculate plaque
coverage in a similar definition to PPI. Let Ap and Ae be the
area of the plaque and enamel regions, respectively. Here, we
define the teeth region as the sum of the plaque and enamel
areas (i.e., Ap +Ae). We determine Ap and Ae by counting
the number of pixels that are labeled as plaque and enamel,
respectively. We calculate the plaque coverage PC as follows:

PC =
Ap

Ap +Ae
(2)

The current LumiO system uses this PC metric to determine
the intensity of toothbrush vibration. We use 0.01 as
the threshold for switching the vibration intensity because
plaque regions are quite visible in QLF intraoral images by
human eyes. Future work should revisit this threshold after
consultation with professional dentists.

In our current LumiO prototype, an external computer
connected to the camera through USB runs the plaque
detection process. Additional hardware improvements may
enable mobile devices to perform the detection through
wireless connections. If the recognition algorithm is
lightweight (e.g., naïve color thresholding), we expect that
plaque detection can even run on the device.

PLAQUE DETECTION METHOD COMPARISON
We conducted a small-scale evaluation on LumiO. We had
two objectives in our evaluation: comparing different machine
learning methods for plaque detection and uncovering user
experience of Lumio. For these purposes, we conducted two
experiments. In this section, we explain our first experiment,
comparing plaque detection performance with three machine
learning techniques.

Although we wanted to include more participants in our
experiments, we decided to run in a very small scale. Our
evaluation included tasks with using the LumiO device, and
thus we needed to be very careful about hygiene. To this end,
we provided a LumiO toothbrush head to each participant.
This also, however, limited the number of participants we
could recruit because we had to produce Lumio toothbrush
heads by ourselves. Due to this limitation, we were only able
to recruit four participants (two males and two females, the
average age of 21.5; P1 – P4).

Procedure
We first collected intraoral image data by LumiO. All of the
participants regularly performed toothbrushing once or twice
a day. One of them also used dental flosses or interdental

Figure 6: F1-scores against different k values (under the
conditions of RGB, with-toothpaste and user-dependent
training). F1-scores start saturated at k = 11.

brushes. But none took regular dental checks or treatments by
professional dentists.

At the beginning of the study, we explained the study
procedure and LumiO device. We disabled the vibration
and plaque detection for this part of the study. Participants
were then asked to capture intraoral images with LumiO. We
instructed them to put the LumiO’s head at different locations
of teeth. They were asked to move the brush back and forth
in gentle strokes as if they would perform toothbrushing with
a normal electric toothbrush. We collected intraoral images
under conditions of using toothpaste and not. We used Sunstar
GUM Dentalpaste S-3806 toothpaste (white-colored). Data
collection always started with the condition of not using the
toothpaste. Each participant was strictly instructed to use her
own LumiO toothbrush head. We also performed sterilization
to the LumiO body with alcohol disinfectant.

We extracted twelve frames that captured plaque areas from
videos recorded by LumiO. Two raters, including one of the
authors, manually labeled the area of plaque, teeth, and gums
in each frame. We only used the areas both raters agreed as
the positive examples for each category, and discarded the rest.
We tested the RGB and HSV values of each pixel (thus, three
values per pixel) as features in our classification. Each frame
was 640 x 480 pixels, and as a result, we had 15.6M samples
in total.

The number of samples is too large for the testing purpose,
and we down-sampled to 40,000 samples for each class.
Samples were equally taken from all participants. We used
this down-sampled dataset for our testing. To avoid a potential
bias by this down-sampling, we performed random sample
selection ten times with different seeds, and created datasets.
We report the average results of our testing with ten datasets.

We tested Naïve Bayes (NB), k-nearest neighbor (kNN),
and Support Vector Machine (SVM) with the RBF
kernel in our evaluation. We examined classifiers under

6http://jp.sunstargum.com/lineup/pstcem/dentalpaste/
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Feature RGB HSV

Training User-dependent User-independent User-dependent User-independent

Toothpaste With Without With Without With Without With Without

NB 0.68 0.64 0.67 0.56 0.76 0.75 0.66 0.68
kNN 0.92 0.91 0.67 0.68 0.91 0.90 0.67 0.69
SVM 0.92 0.91 0.67 0.66 0.91 0.90 0.69 0.69

Table 2: Overall F1-measure results of the three machine learning techniques.

With toothpaste
User-dependent User-independent

Teeth Plaque Gum Total Recall Teeth Plaque Gum Total Recall

Teeth 38332 1214 404 39950 0.96 29402 6582 3966 39950 0.74
Plaque 1093 36061 2827 39981 0.90 7253 21682 11046 39981 0.54

Gum 842 3103 36123 40068 0.90 2149 8339 29581 40068 0.74

Total 40268 40379 39354 38804 36602 44594
Precision 0.95 0.89 0.92 0.76 0.59 0.66

Without toothpaste
Teeth 38235 1430 224 39889 0.96 26626 5790 7474 39889 0.67

Plaque 1651 35255 3172 40078 0.88 6775 23776 9527 40078 0.59
Gum 495 3888 35650 40033 0.89 3395 7402 29236 40033 0.73

Total 40380 40573 39046 36795 36969 46236
Precision 0.95 0.87 0.91 0.72 0.64 0.63

Table 3: The confusion matrices for recognition results using SVM and the RGB features.

both user-dependent and independent training. In the
user-dependent training, we performed 5-cross validation;
therefore, we used 80% and 20% of the data for each
participant to train and test a classifier, respectively. In the
user-independent training, we used data from three participants
for training and the rest for testing. Thus, we performed
4-cross validation for the user-independent training. We tested
the k value from 1 to 29, and chose k = 11 as the performance
became saturated (Figure 6). For determining hyperparameters
in SVM, we used 2K samples of the training data. This portion
of the data was not included for training the classifier.

Results
Table 2 summarizes the results of our classification test. Our
results show that kNN and SVM outperformed NB under
the user-dependent training. But the three methods were
comparable when trained under the user-independent training
protocol. Training protocols affected the overall accuracy
while the features (RGB vs. HSV) and the existence of
toothpaste did not influence much.

Table 3 presents confusion matrices of SVM with the RGB
features. This table again confirms small effects on the
accuracy by toothpaste. It also shows that the precisions and
recalls decrease for all classes in the user-independent training.

Figure 7 illustrates four examples of recognition results. These
recognition results were under the user-dependent training.
NB tended to under-estimate plaque regions. kNN and SVM
were accurate, but sometimes caused mis-classification as
seen in the second to fourth rows. In-depth analysis on
mis-classification results may lead to further improvements
though it is beyond the main scope of this work. Our
quantitative results confirmed that plaque detection was
possible at a reasonable accuracy.

QUALITATIVE LABORATORY EVALUATION
We also conducted a small-scale qualitative evaluation to
investigate the user experience of LumiO. The objective of
this part of the evaluation was to confirm that LumiO can
offer improved awareness of how well participants were
able to remove plaque during their toothbrushing. Similar
to the previous experiment, the number of the participants
was limited, and quantitative metrics (e.g., usability scales
or subjective workload indices) are not appropriate. We
thus decided to take a qualitative method to examine user
experience of LumiO.

Procedure
We instructed participants to come to our laboratory again.
We captured intraoral images before asking participants to
brush teeth with LumiO. We used the Miharu-kun device for
this video-capturing. Participants were then asked to perform



Figure 7: Examples of successful and unsuccessful plaque detection (under the user-dependent training). (From left to right)
Raw images captured with LumiO; ground truth data; and recognition results with the three machine learning algorithms. Green,
red and yellow represent teeth, plaque, and gums respectively. The first row shows a successful example where all classifiers
recognized well. The second row is an example where the three classifiers showed different results. The third row shows an
example of over-estimating plaque areas. The fourth row is another failure case where a large portion of teeth was recognized as
gums.

toothbrushing with LumiO using toothpaste. We instructed
them to toothbrush as long as they liked, but it was two minutes
long at minimum. After completing the task, we had short
semi-structured interviews to obtain quantitative feedback on
LumiO. None of our participants was native or proficient in
English. We thus interviewed in their native language and
transcribed and translated quotes to English as faithfully as
possible for the report in this paper.

We used kNN (k = 11) as the classifier because it was able
to run in real time and its performance was comparable
with SVM. We trained the classifier with data from all the
participants obtained for the comparative evaluation. During
the study, the system ran classification for each frame of 307K
(640 × 480) pixels. This number was too large even for kNN
to run in real-time. Therefore, we randomly sampled 3000

pixels with a 5 × 5 elliptical kernel, followed by dilation.
Figure 8 shows an example result.

Each participant completed one session which lasted
approximately one hour. All participants were offered
approximately 15 USD in a local currency as a compensation
at the end of the study.

Results

Improving Awareness of Plaque
All participants expressed positive experience of LumiO,
particularly improved awareness of plaque on teeth. Two
participants explicitly commented the benefit of LumiO we
wanted to achieve.



Figure 8: An example result of the recognition process used
for the qualitative evaluation. (a) A raw image captured by
LumiO. (b) Recognition results of sampled pixels shown as
colored dots. Green, red, and yellow represent teeth, plaque,
and gums, respectively.

I did not really know where my teeth have got dirty, and
it is painless that the toothbrush automatically detects it.
[P1, female]

It is hard to see the inner part of the mouth even with
a mirror. This [LumiO] gave me a feeling that I was
successfully getting rid of plaque. [P2, female]

Another participant, P3, mentioned that LumiO can solve a
common problem that people do not always know when they
should finish toothbrushing.

I usually stop toothbrushing when TV commercials end.
But, I like it [LumiO] because I can know when I should
finish my toothbrushing. [P3, male]

P4 agreed on the benefits of LumiO for similar reasons, but he
was not very sure about the feedback.

I felt different vibration strength, but I could not tell how
the device determined it. [P4, male]

He suggested possible improvements about the feedback
design. We will discuss them in the later section.

Building Confidence on Toothbrushing
As LumiO offers feedback about plaque, participants were able
to build confidence on their toothbrushing. This is another
promising result for the LumiO design. P3 and P4 explicitly
mentioned that the feedback by LumiO contributed to their
confidence on toothbrushing.

Because I had perceivable feedback like vibration sounds,
I felt that I was brushing well. [P3]

I had some sort of assurance that (LumiO) was brushing
well because the device detected plaque and feedbacked
to me. [P4]

Possible Improvements on LumiO
The current LumiO device has a relatively large brush head.
This made participants feel uncomfortable when they tried to
brush the inner part of their mouths. Downsizing the head is
critical to improve the viability of LumiO.

The brush head was too big. It was difficult to brush the
inner part. It should be half the size. [P1]

Our participants were generally positive about the haptic
feedback of LumiO, but P2 expressed some potential
embarrassment caused by the vibration sound.

It was a bit embarrassing to me that the (vibration)
sounds were large. People might think that my teeth
are full of plaque. [P2]

To make LumiO more socially acceptable for use in a public
space, she suggested another haptic modality channel.

It might be interesting to use heat as feedback. Because
only I can feel that feedback. [P2]

P4 was the person who did not clearly understand the LumiO’s
feedback. He wanted to have clearer feedback about plaque,
such as a numerical score.

I could not really know whether I had plaque or not
through the feedback. I want to see numeric values as
well as vibration strength. Maybe on a smartphone. [P4]

P3 suggested another improvement on the LumiO’s feedback
to indicate where he should brush next.

It would be great if the device can guide me to where my
teeth are dirty. [P4]

DISCUSSIONS
Our comparative evaluation on machine learning techniques
for plaque detection revealed higher performance with kNN
and SVM than NB. It also confirms that the classifiers
performed well under the user-dependent training. We
expected that they would achieve similar results even under
the user-independent training. However, the accuracy results
were lower in all conditions and techniques. In the worst case,
there was a 0.25 score decrease in the F-measures between
the two training protocols (classifier: SVM, feature: HSV, and
no toothpaste). One possible explanation is that we did not
perform adjustment of image properties across the participants
(e.g., brightness). These properties can be subject to how
widely the user opens her mouth as well as ambient light. This
might have contributed to causing varied feature distributions,
potentially resulting in lower accuracy.

Our results reveal that the effects by toothpaste were not large.
Figure 9 shows an intraoral image when one of our participants
was toothbrushing with toothpaste. As seen in this figure,
when toothpaste is dissolved with water and saliva, it does not
cover teeth and gums much. After users rinse their mouth at
least once, the effects by the toothpaste are further decreased.
We thus conclude that LumiO has a potential to be usable in
real toothbrushing.

We also found that intraoral images were often too dark
and difficult to identify plaque locations even in eye-balling.
Adding more blue-violet LEDs in the brush head is one
solution. Another possible approach is to replace brush hairs
with optical fibers. Light can pass through them directly on
the surface of teeth and gums. These fibers can also be used
as a channel for image capturing. Thus, they can offer a much
closer view of plaque and teeth, and a toothbrush with such



Figure 9: An intraoral image when a participant was
toothbrushing with toothpaste. Plaque regions are manually
annotated.

optical fibers may offer better detection results. Future work
should consider these hardware modifications.

In our user evaluation, participants expressed positive values
of LumiO even after a short period of use. In particular,
qualitative results we obtained clearly indicate a strong
potential to improve the awareness of plaque and contribute to
developing confidence on toothbrushing. The results also
suggests a number of improvements, encouraging further
research in this space.

LIMITATIONS
Although this work demonstrates the feasibility and potential
benefits of LumiO, there are several limitations in the current
prototype and evaluation. As explained in the section above,
not all kinds of bacteria exhibit the QLF property. Thus,
LumiO does not always guarantee the complete removal of
plaque on teeth.

We do not claim that this work has confirmed medical benefits
of LumiO in oral care. Study results need to be re-examined by
professional dentists. Future work should also re-validate the
labels in our dataset through devices approved for professional
use or annotations by dentists. Nevertheless, our results
encourage researchers to further examine medical implications
of LumiO.

Our current plaque detection method runs in a pixel level.
Although SVM generally performs well, its computational
cost is relatively high and it does not run in real time in
our current implementation. The primary objective of this
work is to examine the feasibility of the LumiO concept, and
therefore, we decided not to optimize our vision-based method
rigorously. Future work should investigate more efficient
image processing as well as better recognition methods.
For example, clustering before executing classification may
improve the recognition rates.

Our evaluation only had a very limited number of participants.
As stated, our hardware production and hygiene issues
constrained the scale of the study. But the hardware design is
ready for larger-scale production. Our contributions thus are
not intrinsically limited in terms of technology scalability.

CONCLUSION AND FUTURE WORK
Dental care is an important activity in personal health
management. We present LumiO, a toothbrush that can
detect plaque on teeth users are currently brushing. LumiO
utilizes the QLF property to recognize how much plaque
remains on teeth. We describe the hardware design of the
current LumiO prototype and explain our vision-based plaque
detection algorithm. Our evaluation confirms a potential of
LumiO’s viability. A quantitative performance comparison
on different machine learning techniques shows that plaque
detection was possible at a reasonable accuracy. Qualitative
feedback from our participants supports our hypothesis that
they were able to have improved awareness of plaque and
build confidence on their toothbrushing.

Future work should expand the validation of LumiO to a
larger scale. In our current LumiO prototype, we intentionally
design feedback about plaque in a self-contained manner. But
LumiO may be able to offer users richer information about
brushing by using additional devices, such as smartphones and
smartwatches. We will explore different interface design to
further improve user experience of toothbrushing with novel
sensing technologies.
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