

Sketching and Drawing in the Design of Open Source Software

Eunyoung Chung1, Carlos Jensen1, Koji Yatani2, Victor Kuechler1, and Khai N. Truong2

Abstract

In co-located software development, diagramming
practices, such as sketching ideas out with a pen and
paper, support the creative process and allow
designers to shape, analyze, and communicate their
ideas. This study focuses on the diagramming practices
used in the design of Open Source Software (OSS),
where the norm is highly distributed group work. In
OSS, text-based communication (e.g., mailing lists)
dominates, and sketching and drawing diagrams
collaboratively remains difficult due to the barriers
imposed by distance and technology. Previous studies
have examined these practices and barriers in the
context of individual projects. To understand how
contributors across OSS projects use diagrams in
design-related activities, we conducted a survey of 230
contributors from 40 different OSS projects, and
interviewed eight participants. Our results show that
although contributors understand the advantages of
using diagrams for design-related activities, diagrams
are infrequently used in OSS. This motivated us to
examine how and why diagramming occurs, and the
factors that prevent widespread use in OSS. Finally,
we propose new ideas for supporting design activities
in OSS projects.

1. Introduction

Research has shown that diagrams play an
important role in software development as a way to
represent knowledge and information, simplify
complex information, and promote communication
among people. Designers and developers extensively
use diagrams for these purposes as well as to prototype
and share ideas [10]. Specifically focusing on sketches,
Tversky et al. noted that the designers’ mind is
expressed through such external representations, which
also become a source of creativity [19].

Cherubini et al. showed that diagram use is very
important in co-located development [3]. They showed
that diagramming practices are primarily rooted in the

use of tangible media, such as paper or whiteboard.
Despite the well-documented advantages of sketching
and drawing for design, these practices are not always
adopted in a highly distributed environment.

Open Source Software (OSS) development is a
notable example of a distributed development model.
Previous research has shown that deliberations
regarding crucial changes and problems in OSS design
are often performed through text-based channels —
mailing lists or forums [1, 12], rather than through
shared diagrams as is more common in co-located
development. This raises a number of interesting
questions about diagramming practices in OSS
projects: When are diagrams used? How is their use
different in OSS compared to co-located settings?
What is the reason for these differences?

Motivated by the lack of data about diagramming
practices in distributed development, Yatani et al.
studied how and why Ubuntu contributors used
diagrams in their development process [20]. They
showed that contributors express ideas using freehand
sketching to explore different designs1 as well as to get
feedback from community members, albeit not as
frequently as their co-located counterparts. Many of
the barriers that their participants encountered were
related to the technical limitations of current computer-
based diagramming tools, and how they conflicted with
the OSS workflow [20]. As Yatani et al.’s study was
only exploratory in nature and focused on a single OSS
project, we decided to follow up with a much broader
study that would explore OSS diagramming practices
and barriers in greater depth, especially as they relate
to design, across a broad set of OSS projects.

In this study, we used a mixed methods approach to
gain a better understanding of diagramming practices
in OSS, particularly practices around design-related
activities. We deployed an online survey and recruited
230 respondents from 40 different OSS projects. Our

1 In this paper, as in Yatani et al’s paper., “design” refers to designing
interfaces entangled with interaction between subsystems including
system behaviors and appearances [18, 20].

1 School of Electrical Engineering & Computer Science
Oregon State University

Corvalis, OR 97331-5501, USA
{chung, cjensen, kuechlej}@eecs.oregonstate.edu

2Department of Computer Science
University of Toronto

Toronto, ON M5S 3G4, Canada
{koji, khai}@dgp.toronto.edu

key finding from the survey is that although
participants from a variety of OSS projects appreciated
diagrams, they did not use them effectively in their
design practice. We then conducted semi-structured
interviews with eight survey respondents to deepen our
understanding of their motivations and practices
related to diagrams. These interviews revealed how
and why diagrams are created and used, as well as the
challenges that hinder diagram use in OSS
development.

2. Related Work

Designers typically have a strong need to
communicate with stakeholders in order to try out
solutions and minimize mistakes throughout the design
process [17]. Diagrams are a crucial tool to support
critical thinking, problem solving, decision-making,
and communication [2, 6, 11]. Larkin claims that
diagrams externalize the relationships between
knowledge and information, and therefore help to
organize pieces of information, build perceptual
inferences, and construct ideas [11].

Many studies have shown how diagrams promote
cognitive processes and social interaction between
developers and designers. Blackwell lists some
desirable properties of diagrams: encouraging novice
programmers, promoting learning processes, and
supporting communication [2]. Hahn and Kim state
that diagrams have been extensively used in evaluation
and analysis of system design, and for developing
system behaviors [9].

Cherubini et al. described nine scenarios in which
diagrams (visual representations of projects or design
considerations) were actively used by co-located
software development teams [3]. The nine scenarios
are: understanding existing code, ad-hoc discussion,
designing/refactoring, design review, on-boarding
(helping new members acquire project knowledge),
explaining to secondary stakeholders, explaining to
customers, hallway art, and documentation. Their study
showed that diagrams were not just used in official
“design sessions”. Developers relied on frequent
“drop-in” meetings—informal ad-hoc sessions with
other project members where ideas are shaped through
informal sketches on a whiteboard—as a part of their
creative process. Thus, diagrams were created and
shared for many different purposes. Though developers
and designers sometimes invested effort in refining
diagrams, in most cases, diagrams were transient and
therefore, not archived or modified for the future use.

Diagrams can also be highly sophisticated. Myers et
al. showed that designers occasionally used
diagramming tools to create and demonstrate system
behaviors [13]. Such interactive prototypes of a system

facilitate communication among designers, and enable
them to explore navigation and simplify system
behaviors.

Many have studied the practices and challenges
with coordination, collaboration, and communication
in highly distributed software development [15].
Although OSS contributors are often highly distributed
and volunteer-driven, they successfully use Computer-
mediated communication (CMC), mainly text-based
communication, to coordinate their work [8, 14].
Barcellini et al. show that Python contributors
communicated with each other through three channels:
a discussion space (e.g., mailing lists, forums, and
chats), a documentation space (e.g., blogs, wikis, and
project websites), and an implementation space (e.g.,
source code repositories) [1]. These channels, common
to most OSS projects, support the contributors’
collaboration on problem solving, clarification,
decision-making, and design evaluation.

Yatani et al. examined how Ubuntu contributors used
diagrams in their project [20]. They found that Ubuntu
contributors occasionally used diagrams for five of the
nine scenarios defined by Cherubini et al [3]. But, they
did not find clear evidence of diagrams used for design-
related activities. The results gained from this study
show that OSS contributors understand the benefits of
diagrams in design-related activities, and used diagrams,
but not as actively as in co-located software
development. Our results also indicate that diagrams
used for design-related activities were published for
different audiences for different purposes. Our findings
provide further understanding about diagram use in OSS
development.

3. Study Method

We designed our study to answer the following
research questions:

1. How frequently do contributors use diagrams
for design-related activities in OSS projects?

2. How do contributors create these diagrams?
3. How and why do contributors use diagrams?

In this section, we describe the two parts of our study:
an online survey, and semi-structured interviews.

3.1 Survey

We conducted an online survey, running from
January 2009 to June 2009, to collect quantitative data
about diagramming practices and the attitudes of
contributors in a variety of OSS projects. The survey
was divided into three sections: Demographic
questions, diagramming practices, and wrap-up.

In demographics, we defined 10 common roles in
OSS projects (project management, coding package

maintenance, patch creation, testing, translation,
community building, design, marketing, and user
support), and participants could choose any number of
these (at least 1). We asked about project membership,
length of participation, formal CS training, and
whether participants also work in co-located
development.

We adopted the diagram scenarios from Cherubini’s
study to examine the different purposes for
diagramming [3] (see above). Table 1 shows the
questions from the diagramming practices portion of
the survey. The survey took approximately 20 minutes
to complete.

Table 1: Questions about diagramming practices.
Q1. Please indicate how often you currently

engage in each of the nine activities. (Daily /
Weekly / Monthly / Yearly / Never)

Q2. Please indicate the frequency of your diagram
use for the nine activities. (All the time / Very
often/ Sometimes/ Rarely / Never)

Q3. Please indicate which medium you use to
create diagrams for the nine activities. (Paper
sketch / Software tool / Blueprint / ASCII art /
Diagram not created)

Q4. Please indicate how much you agree to use
diagrams for the nine activities. (Strongly agree
/ agree / neutral / disagree / strongly disagree)

We recruited participants by posting to the mailing

lists of 40 OSS projects of different sizes. Examples of
our selection of projects are KDE, Gnome, Ubuntu,
Fedora, Firefox, Open Office, Gentoo, Apache, OLPC,
Debian, Mono, and Myth TV. We did not rigorously
screen and select the projects with any specific criteria
because we wanted to broaden the scope of the study
and gain diagramming practices in different projects.

A total of 230 people completed the survey, five of
which were randomly selected to receive a $30 gift
certificate as compensation.

3.2. Follow-up interviews

We performed eight follow-up interviews with a
representative selection of the survey participants to
gain a better understanding of specific diagramming
practices. Four interviewees explicitly stated they were
involved in design activities in our online survey at the
time we interviewed them. All but one participant had
some experience with design. During the interviews,
we asked participants questions about their experience
with diagramming in OSS projects, as well as
clarifying questions about their survey responses. All
interviews were conducted over the phone, and lasted

50 minutes on average. All conversations were
recorded and transcribed. We compensated all
participants with a $30 gift certificate.

These interviews and the open-ended questions in
our survey provided us with qualitative data to draw a
more in-depth understanding of diagram use in design-
related activities. We extracted 77 quotes related to
design from the recorded interviews. Three of the
authors conducted an iterative open coding [16] of the
extracted quotes, and constructed the code set in Table
2. We identified recurring themes and events
associated with diagramming and design-related
activities, the roles of diagrams in the OSS workflow,
and requirements for future tools.

Table 2: Coding schemes on designing activities.

Theme Sub-theme Agreement Cohen’s Kappa
Pen and paper 0.99 0.8
Software tools 1 1

Creation:
Methods

Collaborative tools 0.99 0.9
Getting feedback 0.97 0.88
Own
understanding

0.99 0.93

Aid for others 0.94 0.78
Documentation 0.99 0.82

Creation:
Purposes

On-boarding 0.99 0.85
Update Updating 0.99 0.85

4. Results

4.1 Demographics

Our participants claimed to assume 4 different roles
on average within their OSS projects. Code
development (66%), bug reporting, and testing (both
61%) were the most common roles. Only 19% of
participants identified themselves as designers.
However, our question about the frequency of the
activities revealed that 40% of the participants (see
Figure 1) were involved in design/refactoring and
design review on a daily or weekly basis. Unlike in co-
located development teams, roles in OSS projects are
more loosely defined and fluid [14]. Contributors are
more likely to engage in a number of activities, and
move across roles as the project and their interests
evolve.

Figure 1: Frequency of design-related activities.

!"#$

!!#$

%&#$

'(#$

')#$

'*#$

!%#$

!!#$

!'#$

!!#$

(#$ %(#$ "(#$ &(#$ +(#$!((#$

,-./01/1023-456789/10$

,-./01$9-:/-;$

,5/<=$ >--?<=$ @817A<=$ B-59<=$ C-:-9$

Table 3: Diagram use for design-related activities:
Developers with CS vs. non-CS background.

 CS background No CS background
 Designing/

Refactoring
Design
review

Designing/
Refactoring

Design
review

All the time 8% 9% 6% 2%
Very often 21% 19% 9% 11%
Sometimes 27% 27% 23% 26%
Rarely 14% 13% 26% 19%
Never 30% 32% 36% 43%

Table 4: Diagram use for design-related activities:
Co-located vs. non-co-located developers.
 Co-located Non-co-located
 Designing/

Refactoring
Design
review

Designing/
Refactoring

Design
review

All the time 13% 14% 4% 2%
Very often 21% 20% 17% 16%
Sometimes 28% 29% 25% 25%
Rarely 15% 12% 18% 16%
Never 24% 26% 36% 41%

The majority of participants (80%) had a Computer

Science (CS) background, in this case defined as
having taken some formal CS classes. We compared
the frequency of diagram use in two design-related
activities (design review and design/refactoring)
between those with and without a CS background
(Table 3). For a statistical test, we used a Mann-
Whitney’s U test, appropriate for comparing two
independent sample groups of ordinal data. The Mann-
Whitney’s U tests found significant effects of a CS
background on frequency of diagram use (Z=-1.94,
p=.05, the effect size r=.13 in designing/refactoring;
and Z=-2.18, p<.05, r=.14 in design review). This may
imply that contributors with a CS background were
likely more aware of the advantages of diagramming,
and the tools and techniques for doing so than their
colleagues, and therefore more willing to do so.

Forty-four percent of our participants also work in
co-located environments. We do not have data on
whether this was co-located proprietary software or
OSS development. However, we expected these
contributors to carry over practices in co-located
development into their OSS work. Table 4 shows the
comparison of the frequency of diagram use between
contributors who were involved in co-located
development and those who were not. A Mann-
Whitney’s U test revealed that co-located contributors
used diagrams significantly more often than non-co-
located contributors (Z=2.78, p<.05, r=.18 in
designing/refactoring; Z=3.41, p<.05, r=.22 in design
review).

Figure 2: Frequency of diagramming practices in
design-related activities.

Figure 3: Attitudes toward diagramming practices
in design-related activities.

4.2. Attitudes to and frequency of diagram use

We examined how often participants used diagrams
for design-related activities. As shown in Figure 2,
24% of the participants answered that they
diagrammed “all the time” or “very often” for design
review, and 27% of participants answered that they
diagrammed “all the time” or “very often” for
designing/refactoring. These contrast with the
perceived value of diagramming among participants
(see Figure 3). While a minority claims to diagram
regularly, 76% agreed that using diagrams for design
related activities has value.

In the following sections, we discuss the practices
and challenges around using diagrams in the design of
OSS by examining the results from our interviews with
eight participants.

4.3 Methods for creating diagrams

In our survey, software tools as well as pen and
paper were the most frequently-used means for
creating diagrams (33% with pen and paper, and 27%
with software tools in design/refactoring scenario; and
25% used pen and paper, and 29% using software tools
for design review; see Figure 4). Approximately 30%
of our participants claimed not to have created
diagrams for these scenarios.

Three interview participants reported that they used
a whiteboard or paper during face-to-face meeting. For
large OSS projects, such as Ubuntu, contributors often
hold summits where contributors and users physically
gather in one place to share ideas and brainstorm for
the next software release. Our participants also created

+#$

*#$

!D#$

!*#$

%&#$

%*#$

!*#$

!"#$

'!#$

'"#$

0% 20% 40% 60% 80% 100%

,-./01/1023-456789/10$

,-./01$9-:/-;$

E<<$7A-$FG-$ H-9=$8I-1$ J8G-FG-.$ 359-<=$ C-:-9$

')#$

'&#$

"!#$

"(#$

!D#$

%(#$

(#$ %(#$ "(#$ &(#$ +(#$!((#$

,-./01/1023-456789/10$

,-./01$9-:/-;$

J79810<=$509--$ E09--$ C-K795<$,/.509--$ J79810<=$L/.509--$

freehand sketches with pen and paper for their own
use. They drew icons, pictures of the system, and
interactions between subsystems.

“[W]hen there is something complicated I tend to draw
diagrams […] on paper, write a few notes, and sketch.”

Figure 4: Methods to create diagrams.

In terms of tool use, participants used a variety of
tools, including Gimp, Inkscape, Cmaptool, Dia, and
Photoshop. However, their tool use does not seem as
varied compared to co-located development where
Myers et al. found that 16 different tools were used for
different design process [13].

We also found different levels of formality in their
diagrams. For instance, they often used rough sketches
to create mockups in order to present their ideas to
other developers. Formal diagrams like UML were
created for documentation.

“Very formal diagrams like UML that would be pretty
rare only in this case. When refactoring it is common,
or when designing something new.”

“If we’re programming, it is very helpful for other
people to follow design and UML guidelines.”

Our interview participants sometimes used a
collaborative tool when they needed synchronous
communication with each other. Traditionally, visual
communication among co-located designers and
engineers has been based around tangible media, such
as a whiteboard [3, 10]. However, such tangible media
have no analogue in distributed situations. Two
interview participants indicated that they used
electronic sketching tools for remote design meetings.
An example of such a tool is Dimdim [5], which
provides a shared online space to chat, edit, and sketch.

“We actually tried to use ‘Dimdim’ to do like a virtual
class room or like virtual whiteboard, so you can
simply use a mouse and draw... Mainly for designing.”

A collaborative diagramming tool allows
developers to synchronously communicate with each
other. However, our participants also felt that current
collaborative tools did not always meet their needs.
One participant explained that a developer who joined

the meeting later could not see the artifacts created by
others and thus failed to really join the discussion.

“We actually stopped using it (Coccinella [4]) because
it is very confusing. What happened was you know, we
had ten people in chat room and we were looking at
the drawing, but then a person number 11 joined late.
They cannot see anything that was drawn before.”

In the survey, we also observed that diagrams were
created with the Blueprint feature in the Launchpad
hosting environment, home to Ubuntu. Our survey
results showed that 70% of the participants who used
Blueprint were also involved in Ubuntu.

The Figure 5 shows examples of diagrams created
by our participants. Figure 5a is a freehand sketch with
a pen and paper for icon designs. The participant who
made this figure scanned the image, and posted it on
her blog to get feedback from other contributors.
Figure 5b is! an interactive mockup created by a
designer for Firefox. This mockup also contains
comments about how to interact with the interface.

a) b)

Figure 5: Sketches and drawings created by our
participants.

4.4. Purposes for publishing diagrams

As shown in Table 2, we identified five purposes

for creating diagrams from our interview data. We also
found that diagram creation for these purposes is
tightly coupled with publication. In this section, we
look into each of the purposes more deeply.

4.4.1. Eliciting feedback

Eliciting feedback was documented in interviews.
We also found that diagrams were circulated through
mailing lists, Internet Relay Chat (IRC), blogs, and
wikis for this purpose. Barcellini et al. found that
discussion channels, such as mailing lists and chat
rooms, were capable of fostering design discussions
and critical evaluations in the Python community [1].
Our empirical data supports their finding by showing
that diagrams were created to capture the attention of
others and promote discussions by explaining and
expressing them in an easily digestible form.

''#$

%)#$

%*#$

%D#$

+#$

!!#$

%+#$

'%#$

(#$ %(#$ "(#$ &(#$ +(#$!((#$

,-./01/1023-456789/10$

,-./01$9-:/-;$$

M5N-9$.?-76A$ J8I;59-$788<$ O<K-N9/17$

EJPQQ597 ,/5095G$187$69-57-L$

4.4.2. Enhancing one’s own understanding

We observed that participants created diagrams to
deepen their understanding of the systems they were
developing, or to test ideas. This was also found by
Cherubini et al. and Yatani et al. [3, 20], and we did
not observe noticeable differences from their findings.
Thus, we decided not to further analyze this scenario.

 “We get user’s immediate idea of what they want, and
we catch a lot of problems before the real design of the
application.”

4.4.3. Aid for others’ understanding

Diagrams were also created to aid others’
understanding. In this case, diagrams were intended to
help others understand the scope of the design and
what contributors really needed to consider.

“It gives us a way of ensuring the design that we make
is translated all the way down to code…”

One participant pointed out an advantage of
diagrams; they can help bridge the language barrier for
developers whose first language is not English. This
observation is in line with findings by Myers et al., and
Olson and Olson [13, 15].

“A lot of this stuff is really technical and just talking
through it is really difficult to do so that the other
person understands. Especially if that person does not
speak [good] English.”

Face-to-face meeting can prevent or clear up
misunderstandings. Myers et al. showed that non-
verbal cues facilitated the process of resolving
problems and misunderstandings in an offline meeting
[13]. However, frequent offline meetings are not
practical in most OSS projects, and not all contributors
may be fluent in English. Although we could find only
a small set of examples in our interviews, this
anecdotal evidence seems to suggest that diagrams may
help mitigate language and cultural barriers.

In co-located development, developers and
designers typically have to present their ideas to
different audiences, such as secondary stakeholders
and users [3]. During these stages, diagrams are used to
explain ideas to others. Our results also show that OSS
contributors occasionally engaged in the same types of
behavior to gain feedback on their ideas:

“If there is discussion about something on the mailing
list and I think I have a good solution, I may do a quick
diagram, or I may do quick mockup, and send it just to
the list. And then, if people decide ‘Hey, it might be a
good idea, I wonder how others like it, and then I post

to the blog. I post to the blog if I want it to be really
public.”

“I create a basic design, and then blog about it on
Ubuntu planet. That gets a lot of viewers and users of
Ubuntu. I got a lot of useful feedback from people
saying whether they thought that part is useful or what
feature should be added.”

4.4.4. Documentation and on-boarding

In our interviews, diagrams were also created for
the purposes of documentation and on-boarding.
Participants referred to documentation presented on a
wiki or diagrams saved in a Content Management
System (CVS). One participant shared with us that his
team stored design mockups on their wiki page. As a
result, that page documented how the design has
evolved.

“You can see current design and old… It is a very
good tool for documenting changes you make with
reasons why.”

Although such a website may be useful for someone
who is interested in joining the project, our participants
also explained that they created diagrams explicitly for
people currently in the process of joining the team.

“Occasionally, it [diagrams] is informative. If I am
working on a project, and I design something, and
there is a new contributor, then a diagram helps
explain structures, so they can get an understand of
how it works.”

 4.4.5. Relationship between creating and
publishing diagrams

Four of the documented purposes of creating
diagrams (eliciting feedback, aiding others’
understanding, documentation, and on-boarding) were
usually intended for publication. As we can see in the
above sections, diagrams were also created for
different audiences. Table 5 illustrates the relationship
between the purposes for the diagram and the target
audience as observed from our participants.

We believe that documentation and on-boarding are
different from the other two purposes we identified.
Diagrams for documentation and on-boarding are
intended to be more archival. On the other hand,
diagrams for getting feedback and supporting
understanding generally aim at addressing problems of
current interest, which can be described as “transient
diagrams” [3].

Our results also indicate that OSS contributors often
use communication channels other than mailing lists to
circulate their diagrams. Mockus et al. showed that

analyzing, reporting, and discussing problems, and
new features were often handled in mailing lists [12],
but that posting diagrams was generally frowned upon.
Our participants preferred to use blogs and wikis to
contact users. By posting mockups on a blog, they felt
that they were able to get feedback from users as well
as developers in a casual manner.

Table 5: Motivating factors for publishing diagrams.

Audience
Self Project Others

Understanding o o o
Documentation x o o
Elicit feedback – o o

Purposes
for

publishing
diagrams On-boarding – – o

o: observed, x: not observed, –: not applicable

4.5. Updating diagrams

We found that our participants did not update
diagrams often. This is in line with what Yatani et al.
found [20]. One reason for this may be that each
diagram must be maintained in the project’s repository
for archival reasons and contributors would rather
make a new diagram than update an old diagram.

Our participants explicitly pointed out an issue with
updating diagrams with repect to tools.

“I think [not updating diagrams] is mainly a tool issue
because sometimes if you have initial design, it works.
You encounter bugs and you go to quickly fix them.
And, there isn’t something that pulls in your
development, explaining to you that ‘you changed an
important code part.’.”

However, we also observed several notable cases of
updating diagrams.

“These comments were on version number 3. I made
changes based on this feedback to create version
number 4. So, I have 4 versions probably I will end up
with at least 6 versions. I am working on version 5
right now.”

Gasser et al. described the process of continuous
design, a common practice in OSS [7]. This is a
process in which developers release prototype systems
and iteratively revise them based on the feedback they
get. These rapid release and feedback cycles make it
difficult to keep documentation up-to-date. We believe
that in order to encourage greater use of diagrams, we
need a way of linking these to the source code in
change-tracking systems.

5. Discussion

Our results show that OSS contributors value their

diagrams for design-related activities, and use a variety
of tools and ways to share these. Our participants
showed very positive attitudes toward diagrams, which
was somewhat surprising when compared to those
reported in Yatani et al., where some participants
showed negative attitudes toward diagram use,
specifically for design review [20]. We also found that
contributors with formal training in CS and who were
involved in co-located development were more likely
to use diagrams in their OSS work. This also implies
that future studies need to consider more carefully how
the participants’ background influences on their
practices and communication in OSS activities.

5.1. Design implication for a future tool

OSS contributors do not seem to have a great deal
of choices when it comes to diagramming tools for
design. Several interview participants stated that OSS
contributors tend to stick with OSS tools. In addition to
the ideological and potential licensing issues involved,
OSS projects heavily rely on volunteer effort. Thus, the
tools that projects use should not be a huge burden on
their contributors, especially in terms of monetary cost.

We found that because OSS contributors are not
always geographically co-located, it is crucial to
synchronize communication and build shared
understanding of their project’s progress. Therefore,
tracking how the design evolves over time could help
other contributors stay up-to-date on the status of the
project.

Another important finding is that contributors will
use different archives to publish their diagrams based
on who the intended audience is. Based on this result,
support for organizing diagrams for different audiences
could help OSS contributors manage and highlight
design-related information more effectively. !

Our study also suggests that the integration of
diagramming tools into the development infrastructure,
such as CVS, could facilitate the design and review
process. In such integration, revision control for
diagrams would also be important so that contributors
could see the evolution of their designs. This would
also be a useful resource for those joining the team and
needing to learn the history of the project. A
diagramming tool for OSS projects should be designed
to accommodate these different purposes

“It would be very helpful to have sort of integration in
development environment and design environment. So,
whenever you change something, you can look back
whether diagram is correct.”

5.2. Threats to validity

Each OSS project has its own characteristics and
culture, and diagramming practices might vary across
different OSS communities. We did not tightly control
from which OSS projects the participants came
because our intention was to span across many projects’
population and gain insight about the various practices.
About 85% of our survey participants were involved in
multiple OSS projects (the average number of projects
participants were involved in was 3). Although we
were not able to focus on the diagramming practices of
any particular project in detail, our results still provide
a broad and general understanding of diagram use
across the OSS community. Despite our relatively
small sample for the interviews, our data converged
after we finished the eighth interview. We believe that
the results gained through the interviews cover many
of the diagramming practices shared by other OSS
contributors, which in turn, provides a deep
understanding of the motivations and practices of
contributors diagramming in OSS.

6. Conclusion

Although the importance of diagramming in
software development is recognized, few studies have
investigated the practices and problems of
diagramming in distributed environments. We studied
how and why contributors in various OSS projects use
diagrams for design-related activities. Our results
revealed that our participants have strongly positive
attitudes toward diagramming, yet diagram use is not
adopted as fully as in co-located development. We also
found that OSS contributors used an analog medium
for diagramming despite the problems associated with
sharing such diagrams over the Internet. Our study fills
out some of the gaps pointed out by Yatani et al.’s
study [20], and contributes a further understanding of
how OSS contributors, particularly those who engage
in design-related activities, use diagrams.

7. Acknowledgements

We would like to thank our study participants for
their time and effort. We also thank the Linux User
Group, Jose Cedeno, and Justin Gallardo for
participating in our pilot study of the survey and
interviews. We also thank reviewers for their valuable
comments on our paper.

8. References

[1] Barcellini, F., Détienne, F., and Burkhardt, J.M. “Cross-

participants: Fostering design-use mediation in an Open

Source Software Community,” In Proc. of ECCE, 2007,
pp. 57-64.

[2] Blackwell, A.F., and Engelhardt, Y. “A meta-taxonomy
for diagram research,” Diagrammatic Representation
and Reasoning, London: Springer, 2002, pp. 47-64.

[3] Cherubini. M., Venolia G., DeLine, R., and Ko A.J. “Let's
go to the whiteboard: How and Why software developers
use drawings,” In Proc. of CHI, 2007, pp. 557-566. !

[4] Coccinella, http://thecoccinella.org/
[5] Dimdim. http://www.dimdim.com/
[6] Funt, B.B. “Problem-solving with diagrammatic

representations,” in Diagrammatic reasoning, The MIT
press, 1995, pp. 33-68.

[7] Gasser, L., Scacchi, W., Ripoche, G., and Penne, B.
“Understanding Continuous Design in F/OSS Projects,”
In proc. of ICSSEA, Paris, France, 2003.

[8] Gutwin, C., Penner, R., and Schneider, K. “Group
awareness in distributed software development,” In
Proc. of CSCW, 2004, pp. 72-81.

[9] Hahn, J., and Kim, J. “Why are some diagrams easier to
work with? Effects of diagrammatic representation on
the cognitive integration process of systems analysis and
design,” ACM Trans. Of CHI, vol.6, pp.181-213, Sept.
1999.

[10] Henderson, K. On Line and On Paper: Visual
Representations, Visual Culture, and Computer Graphics
in Design Engineering, Cambridge, MIT Press, 1999.

[11] Larkin, J.H., and Simon, H. “Why a diagram is
(sometimes) worth ten thousand words,” Cognitive
Science, pp. 65-99, 1987.

[12] Mockus, A., Roy, F., and Herbsleb, J. “Two case studies
of open source software development: Apache and
Mozilla,” ACM Transactions on Software Engineering
and Methodology, vol.11,, pp. 1–38, 2002.

[13] Myers, B., Park, S., Nakano, Y., Mueller, G., and Ko,
A., “How designers design and program interactive
behaviors,” In Proc. of VL/HCC, 2008, pp. 177-184.

[14] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida K.,
and Ye, Y. “Evolution patterns of Open-source Software
Systems and communities,” In Proc. of IWPSE, 2002,
pp. 76-85.

[15] Olson, G.M and Olson, J.S. “Distance matters,” Human-
Computer Interaction, vol.15, pp.139-178, Sept. 2000.

[16] Sharp, H., Preece, J., and Rogers, Y. Interaction Design :
beyond Human Computer Interaction, 2nd ed, Wiley, 2007.

[17] Stappers, P.J. “Creative connections: User, designer,
context, and tools,” Personal and Ubiquitous
Computing, 2006, pp. 95-100,

[18] Thimbleby, H., Blandford, A., Cairns, P., Curzon, P.,
and Jones, M. “User Interface Design as Systems
Design,” In Proc of HCI, 2002. pp.281–301.

[19] Tversky, B., Suwa, M., Agrawala, A., Heiser, J., Stolte,
C., Hanrahan, P., Phan, D., Klingner, J., Daniel, M., Lee,
P., and Haymaker, J. “Sketches for Design and Design
of Sketches,” in Human Behavior in Design:
Individuals, Teams, Tools, 2003.

[20] Yatani, K., Chung, E., Jensen, C., and Truong, K.N.
“Understanding how and why open source contributors
use diagrams in the development of Ubuntu,” In Proc.
of CHI, 2009, pp. 995-1004.

