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(a) frame 0 (b) frame 1 (c) frame 2 (d) frame 3

Figure 1: Autocomplete hand-drawn animation example. Top: after outlining a fish in the first frame (a), the user starts to draw the subsequent frames. Our
system can predict what the user might want to draw next and how to improve what has been drawn already, as indicated by the red strokes in (b), (c), and (d).
Bottom: after finishing the outlines in all frames, the user adds details to the first frame (a), while our system automatically propagates and adapts the changes
to all other frames. Please refer to the accompanying video for live actions and animations.

Abstract

Hand-drawn animation is a major art form and communication
medium, but can be challenging to produce. We present a system
to help people create frame-by-frame animations through manual
sketches. We design our interface to be minimalistic: it contains
only a canvas and a few controls. When users draw on the can-
vas, our system silently analyzes all past sketches and predicts what
might be drawn in the future across spatial locations and temporal
frames. The interface also offers suggestions to beautify existing
drawings. Our system can reduce manual workload and improve
output quality without compromising natural drawing flow and con-
trol: users can accept, ignore, or modify such predictions visualized
on the canvas by simple gestures. Our key idea is to extend the
local similarity method in [Xing et al. 2014], which handles only
low-level spatial repetitions such as hatches within a single frame,
to a global similarity that can capture high-level structures across
multiple frames such as dynamic objects. We evaluate our system
through a preliminary user study and confirm that it can enhance
both users’ objective performance and subjective satisfaction.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; H.5.1 [Information Interfaces
and Presentation (e.g., HCI)]: Multimedia Information Systems—
Animations;

Keywords: animation, drawing, auto-complete, analysis, synthe-
sis, beautification, workflow, user interface, deformation

1 Introduction

Hand-drawn animation is a popular art form and communication
medium. However, it is challenging to produce, even for experi-
enced professionals. In addition to appropriate spatial arrangement
in one frame, users also need to maintain a consistent temporal
flow across multiple frames. Existing computer graphics methods
can ameliorate this difficulty to some extent by reusing underly-
ing art content, such as deforming shape templates [Igarashi et al.
2005] or cloning animated texture sprites [Kazi et al. 2014a]. How-
ever, manual drawing can provide unique freedom of expression
and more natural touch for many artists. Thus, there is a pressing
need of interactive tools that can support creation of manual ani-
mation more effectively while maintaining artists’ natural drawing
practices. This demand is not only for professionals due to the rise
of mobile and social applications for authoring and sharing hand-
drawn animations, which are used by many amateur artists.

We present an interactive drawing system that helps users produce
animation more easily and in a better quality while preserving man-
ual drawing practices. Users simply create a series of drawings in
our system as they would do in their common tools. Our system
records and analyzes their past drawings in the background, and
provides suggestions that can save manual labor and improve draw-
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ing quality. As illustrated in Figure 1, the system can detect po-
tential repetitions such as static objects and dynamic motions, and
predict what might need to be drawn across spatial locations and
temporal frames. Users can accept, ignore, or modify such sugges-
tions analogous to the mechanisms for auto-complete spatial rep-
etitions for single static sketches in [Xing et al. 2014]. Later, the
users may want to modify existing animations, such as changing
the shapes or colors of certain objects. They can simply make de-
sired visual changes in one frame, and our system will propagate
these changes across similar spatial objects at all temporal frames
to reduce tedious manual repetitions. Unlike many existing defor-
mation methods, our system allows users to create animations with
topological changes, such as breaking objects or growing plants.

The key idea of this work is to extend the analysis and synthesis
algorithms of drawing repetitions within individual frames [Xing
et al. 2014] to multiple frames of animations. The method in [Xing
et al. 2014] is based on local similarity, which can predict only low-
level spatial repetitions such as hatches, but not high-level struc-
tures such as complex objects in animations. To overcome this chal-
lenge, we extend their local similarity to a global similarity that can
capture both global contexts (e.g., object contours) and local details
(e.g., individual strokes). We then measure the global similarity
between past and current drawings to predict what the users might
want to draw in the future. The prediction is not 100% accurate, but
is robust enough for common variations (including number, shape,
and order of strokes) as long as the drawing is reasonably coherent
across frames, such as when people follow the well-known block-
ing technique [Iarussi et al. 2013]. Our preliminary user study con-
firmed that participants were able to produce a wide variety of an-
imations in our system with a reduced number of strokes and in
good quality, and expressed positive experiences.

2 Previous Work

Digital painting support A variety of methods exist to support
digital painting, often based on procedural simulation [Chu and Tai
2005; Lindemeier et al. 2015] and data analysis [Lee et al. 2011;
Lu et al. 2013; Lukáč et al. 2013]. However, they mostly focus
on producing single static images. Animation sequences involve
more manual work to create. There are also challenging issues to
automate animation creation process, such as maintaining temporal
coherence [Bénard et al. 2013]. Our work follows a similar line of
philosophy — facilitating digital drawing through interactive sys-
tems, but emphasizes animation.

Animation authoring by sketch Even though powerful tools ex-
ist for creating 3D animations, some of which also offer intuitive
sketch-based interfaces [Davis et al. 2003; Thorne et al. 2004; Mil-
liez et al. 2014; Guay et al. 2015], drawing 2D animations still re-
mains as a common activity for both professionals and amateurs.
Some existing techniques, such as deforming shapes [Igarashi et al.
2005; Sýkora et al. 2009] and interpolating instances [Baxter and
Anjyo 2006; Whited et al. 2010], might not satisfy user’s desires
and needs because the former cannot handle topological changes,
such as a breaking objects or growing plants, and the latter often re-
quire manual specification or refinement of point correspondences.
Cloning texture sprites [Kazi et al. 2014b] and combinations thereof
[Jones et al. 2015] can quickly add animated effects to existing
drawings but not author more general animations.

Enhancement by workflow analysis Workflow recording and
analysis have been extensively investigated recently to support a
variety of content creation tasks, as surveyed in [Nancel and Cock-
burn 2014; Chen et al. 2014; Myers et al. 2015]. Examples in-
clude handwriting beautification [Zitnick 2013], automatic creation

Figure 2: The user interface of our system. Our interface consists of a
main canvas (center), a widgets pane (left), and a time frame slider (bot-
tom). Users draw on the main canvas with tools from the widget pane, and
drag the time frame slider to select existing frames or add new frames. The
main canvas displays the current frame and few preceding frames in lighter
colors for guidance. All these are similar to standard animation sketching
tools. However, our system predicts what the users might want to draw next
based on previous frames. The prediction is presented underneath the can-
vas as a hint (red strokes), which users can accept via a simple gesture or
brush-select specific regions (shown in blue).

of photo editing tutorials [Grabler et al. 2009], and auto-complete
static drawing [Xing et al. 2014]. However, dynamic animations
have received much less attention though workflow analysis has a
potential to improve their creation process. Our work addresses this
issue by incorporating workflow analysis into 2D hand drawings,
and predicts what users may want to draw in animation frames.

3 User Interface

As shown in Figure 2, our user interface is designed to have similar
visual appearance to standard keyframe animation authoring tools.
Users can sketch each frame in the main canvas, and play the frames
as animation. Meanwhile our system automatically records and an-
alyzes their sketches in the background. It then predicts what users
might want to draw next, and visualizes the predictions directly on
the canvas, which the users can accept, ignore, or modify, analogous
to the spatial hints in [Lee et al. 2011; Xing et al. 2014]. These fea-
tures are designed to reduce manual workload and improve output
quality while maintaining the natural manual sketch practice.

Figure 3 shows an example of sketching a new frame. As the user
sketches, our system provides hints based on the preceding frames
and the current drawing (Figure 3a). The user can accept them via a
simple gesture (Figure 3b), ignore it by simply continuing to draw,
or press and hold on the canvas to enable the selection brush on
parts of the hints (Figures 3c and 3d).

The interface displays hints whenever any spatial or temporal repe-
tition is detected (Figure 4). These hints are predicted from motion
and shape in previous frames. As the user adds more strokes, the
system updates the hints accordingly. Our system supports both
temporal repetition with large-scale structures (Figures 4a and 4b)
and spatial repetition of detail-level strokes [Xing et al. 2014] (Fig-
ures 4c and 4d). It also provides an initial hint when the user starts
a new empty frame for bootstrapping (Figure 4a).

Beautification Using the same underlying stroke analysis, our
system can improve what has already been drawn as well as pre-
dict what should be drawn next. Figure 5 illustrates our beautifica-
tion capability. Different from the hand writing/drawing beautifi-
cation in [Zitnick 2013] that computes an average object based on
past similar objects, our system deforms the previous frame to ob-
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(a) hint (b) accept all suggestion

(c) enter selection (d) brush select

Figure 3: Hint. While the user sketches the fish in a new frame, our system
shows both the previous frame(s) (light gray) and the hint for current frame
(light red) in the canvas (a). The user can ignore the hint by continuing
drawing, accept all hints via a simple gesture (b), or activate the brush-
select function (c) to select parts of the hint (d) (brush shown as a circle,
hint highlighted with red color, and selected strokes rendered in blue color).

(a) initial prediction, temporal (b) updated prediction, temporal

(c) initial prediction, spatial (d) updated prediction, spatial

Figure 4: Online prediction update. When the user creates a new empty
frame (a), the system automatically provides an initial prediction based on
the preceding frames, visualized in red color. The user can ignore the pre-
diction and continue drawing (black strokes), and the prediction will be
updated accordingly in real-time (b). Our system supports both temporal
and spatial repetition, such as motion deformation in (a) and (b) and fish
scales in (c) and (d).

tain the suggestions, which are in general more temporally coherent
than fresh drawings [Noris et al. 2011].

Edit propagation A common drawing practice is to create a
rough sketch first and then add details. However, this can cause
an issue in animation authoring because users have to make modifi-
cations across frames. Our prediction mechanism can handle such
cross-frame editing. As an example in Figure 6, users first draw

(a) beautification (b) zoom in

Figure 5: Beautification. As the user draws (shown in black), our system
can suggest beautifying existing drawings (shown in red) based on both
spatial and temporal information, e.g. what has been drawn on the same
frame and previous frames. Users can accept, ignore, or brush-select the
suggestions similar to Figure 3.

(a) outlines (b) add details in first frame

(c) prediction (d) outcome

Figure 6: Edit propagation. After drawing outlines of all frames (a) as
shown in Figures 3 and 4, the user starts to fill in interior details in the
first frame (b). When the user switches to the next frames, the details are
automatically propagated as shown in red in (c). Similar to Figure 3, the
user can accept, ignore, or brush select the hints (d).

the outlines of the fish in each frame and decide to add details later.
They only need to do so in one frame (Figure 6b), and our sys-
tem will automatically propagate and adapt the changes to all other
frames (Figure 6c). Again, users are free to accept, ignore, or mod-
ify these suggestions.

Timeline preview The hint quality depends on not only draw-
ings at individual frames but also the relative motions across nearby
frames. We thus allow users to preview the hint by manually adjust-
ing its timestamp around the current frame. As shown in Figure 7,
users can press-and-hold and then drag the hint directly over the
main canvas to adjust its time stamp along the motion trajectory.
For more intuitive control, our system maps the timestamp of the
hint to the spatial canvas position based on its motion calculated
from Section 4.3, so that users can directly interact with the spa-
tial hint (e.g. dragging in the same direction with the motion will
increase the timestamp) instead of a traditional linear timeline.

Autocomplete Hand-drawn Animations        •        169:3
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(a) backward (b) forward

Figure 7: Timeline preview. The user can directly drag the hints to adjust
its time stamp, such as backward to set an early time (a) or forward for a
later time (b), while seeing the prediction automatically adjusted.

Mode selection As described above, our system includes two
modes: painting and selection. Users can press-and-hold on the
main canvas to activate the selection mode, and double-click on the
main canvas to switch back to the painting mode. Furthermore,
while in the selection mode, users can perform another press-and-
hold to enable timeline preview, and release the contact to go back
to the selection mode. Users can play the whole animation by click-
ing the play button located on the left-bottom corner of the inter-
face. Our system provides a smooth animation by automatically
adding in-betweens.

4 Method

We follow the methodology in [Xing et al. 2014] to analyze repe-
titions in the recorded drawing workflow, and use those repetitions
to synthesize suggestions based on the current drawing. Xing et
al. [2014] is based on a local similarity analysis [Ma et al. 2011],
which is limited to small-scale spatial repetitions such as hatches.
To handle animations with large/complex objects, we extend their
local similarity to a global similarity, which can capture large scale
structures (e.g. tree branches) and adapt to local variations (e.g.
different branch shapes). We then incorporate this global similar-
ity into the registration methods in [Sumner et al. 2007; Li et al.
2008] to deform drawings from the previous frame towards the cur-
rent frame for predicting what the users might want to draw next.
The prediction preserves the spatial shape and temporal coherence,
and adapts to the current user drawings. Our global similarity es-
tablishes a form of fuzzy correspondence [Kim et al. 2012] and can
handle ambiguous situations common in manual drawings, such as
different number, shape, and order of strokes for the same object
across frames for which traditional registration methods may have
trouble with. To facilitate interactive performance, our global sim-
ilarity analysis can be computed incrementally while incorporating
incoming user edits.

We describe the basic representation of drawing workflows in Sec-
tion 4.1, analysis of global similarity in Section 4.2, and synthesis
of predictions in Section 4.3. We illustrate our method with a con-
crete case in Figure 8. Since our method follows [Xing et al. 2014]
for computing small-scale spatial repetitions, this paper mainly ex-
plains our algorithm on the analysis and synthesis of large-scale
temporal repetitions.

4.1 Representation

Sample As illustrated in Figure 9, we represent animation
sketches via samples. We sample each stroke uniformly, and repre-
sent each sample s as

u(s) = (p(s),m(s),a(s), t(s)) , (1)

which includes spatial parameters p(s) that record the position at
s; motion parameters m(s) that capture the local transformation
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Figure 8: Algorithm overview via a simple example. On the UI (a), the
user first draws frame 1 (left) followed by frame 2 (right). The red dots
indicate samples (Section 4.1), and the subscripts indicate their drawing
order. Note that the two frames can have different numbers, shapes, and
orders of strokes. Within our method, as the user draws a new sample s8

in frame 2, our system records it in the workflow, and extracts its neighbor-
hood (blue circle, Section 4.1). Our system then analyzes the likelihood of
s8 corresponding to each sample s′ in frame 1 (Section 4.2) by considering
neighborhood similarity [Ma et al. 2011; Xing et al. 2014] of not only s8 it-
self (blue circle) but also its neighbors such as s3 (yellow circle) to capture
both local and global structures. For example, although s′9 and s8 have a
high local similarity (blue circles), their neighborhood samples s′1 and s3

don’t match well (yellow circles), indicating s′9 matches to s8 only locally
but not globally. We mark those sample pairs with high global similarity
as matching-pairs, and dynamically group each new matching-pair (e.g.
(s′7, s8)) with existing matching-pairs in its neighborhood (e.g. (s′3, s3))
into graphs (bottom (b) and (c)). Each graph represents a group of con-
sistent correspondences [Huang et al. 2008] (top (b) and (c)), and larger
graphs (e.g. red) usually indicate better correspondences than smaller ones
(e.g. blue). Based on the constructed graphs, we can further refine the
global similarities, as they are usually ambiguous in the beginning of draw-
ing. For example, when only s1,2,3 are drawn, s3 could match s′3,4,5. As
more samples are drawn, the largest graph (red) indicates s′3 as the most
likely match to s3. By using the refined global similarity as a kind of fuzzy
correspondence between the two drawing frames, we can deform frame 1

toward frame 2, which will be presented to the user as suggestions (Sec-
tion 4.3). The suggestion is updated each time the user draws a new stroke,
and such frequency can be manually adjusted.

at s across frames including translation, rotation, and scaling; ap-
pearance parameters a(s) including color, pressure and size; and
temporal parameters t(s) that include the global time stamp and a
sample-id for the relative position within a stroke.

We measure the difference between two samples sj and si as

û (sj , si) =
(
p̂(sj , si), αm̂(sj , si), βâ(sj , si), γt̂(sj , si)

)
,

(2)

where p̂, m̂, â and t̂ represent the difference in position p, trans-
formation m, appearance a, and time-stamp t, respectively, and are
all computed with respect to si, i.e. p̂(sj , si) = p(sj)−p(si). To
achieve rotational invariance, we compute p̂(sj , si) in the local co-
ordinates of si, with x-axis being the drawing direction (tangent) at
si (Figure 9). We compute m̂ in the global coordinate frame. α, β
and γ are weighting parameters discussed in Section 4.4.

Neighborhood As illustrated in Figure 9, we define the neigh-
borhood n(s) of s as the set of samples that are located within its
spatial vicinity (in the same frame) and drawn before s. This tempo-
ral causality allows a neighborhood to remain fixed once computed,
facilitating fast incremental computation.

We measure the local similarity between two local neighborhoods
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Figure 9: Illustration of samples and neighborhoods. Each stroke (gray
color) is represented by samples (small colored circles). The neighborhood
n(si) of each sample si (red color) only contains samples (1) within its
spatial vicinity (yellow circle) and (2) drawn before it (green color). The
similarity between two sample neighborhoods n(s′i) and n(si) is calcu-
lated by first matching neighborhood samples (e.g. sj and s′j ) followed by
summing up their pairwise similarities (e.g. û(s′j , s

′
i) and û(sj , si)). In

particular, the spatial similarity (p̂(s′j , s
′
i) and p̂(sj , si)) are matched in

the local frames (black axes) of s′i and si.

n(s′i) and n(si) by summing up the pairwise similarity of their
neighborhood samples:

π(s′i, si) =
∑

s′j∈n(s′i),sj∈n(si)

σ(s′j , sj), (3)

where sj runs through all samples in n(si), s′j is the “matching”
sample of sj selected via the greedy matching method described in
Section 4.4, and σ(sj , s

′
j) is the pairwise similarity between two

neighborhood samples:

σ(s′j , sj) = exp
(
−
∣∣û(s′j , s

′
i)− û(sj , si)

∣∣2) , (4)

with û(sj , si) defined in Equation (2).

4.2 Global Similarity Analysis

Equation (3) only measures the local similarity between samples,
which may cause mismatches due to ambiguity, as illustrated in Fig-
ure 8. We address this by extending this local similarity to a global
similarity, which can be applied to samples in the same frame to
identify spatial repetitions like [Xing et al. 2014] as well as sam-
ples across different frames for sketching animations.

As illustrated in Figure 8, the global similarity Π of two samples
s′i and si is influenced by two factors, the global similarity of their
neighborhood samples (recursively) and their local neighborhood
similarity σ defined in Equation (4). We formulate Π as

Π(s′i, si) =
∑

s′j∈n(s′i),sj∈n(si)

Π(s′j , sj)σ(s′j , sj). (5)

Equation (5) can be seen as a Π-weighted extension of Equation (3).

Note that Equation (5) is a recursive formulation. Since the neigh-
borhood only contains nearby samples drawn before (Figure 9), the
process goes only backward in time and thus avoids infinite cy-
cles. Each recursive step is calculated in a different local coordinate
frame (illustrated in Figure 9) to adapt to the local structures (e.g.
red arrows following branches in Figure 10), and the whole recur-
sive process can diffuse to a larger area by going through multiple
local frames (e.g. blue circles in Figure 10). Since our system cal-
culates and stores all previous global similarities, the recursive for-
mulation can be easily calculated incrementally as the user draws.
In contrast, although broader contexts can also be captured by local
similarity with very large neighborhoods [Belongie et al. 2002] (e.g.
enlarging the yellow circles in Figure 10), it is harder to accelerate
and less adaptive to local structural changes than global similarity,
e.g. the deformed branches in Figure 10.
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s'6 s'7
s'8

s'9
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s2

s3

s4
s5

s7
s9

s'10

s8 s10

s6

s11
s'13

s'12

s'11

Figure 10: Global similarity example. When calculating the global sim-
ilarity between s′8 and s11 (red dots), we start with their local neighbor-
hoods (yellow circles) and gradually diffuse (indicated by the red arrows)
towards the nearby neighborhoods (blue circles), capturing global struc-
tures in a larger area (blue samples). The process only goes backward in
time, e.g. no diffusion to magenta samples. Due to the different drawing
orders between s′8,9 and s10,11, s11 matches less well with s′8 than s′13 lo-
cally. However, the diffused structures (blue circles) indicate a better global
match between s11 and s′8 than s′13.

Since our global similarity is temporally causal (e.g. neighborhoods
and diffusion order), it is influenced by the drawing orders. In par-
ticular, the more coherent the drawing orders among frames, the
more effective the analysis is. For example in Figure 9, if the user
draws top-down in the left frame and bottom-up in the right frame,
the global context between the two central red samples would be
very different. Fortunately, since people usually draw coherently
[Iarussi et al. 2013], our method works well in practice.

Initialization Since the global similarity is unknown for the first
frame or at the beginning of drawing each subsequent frame, we
initialize Π(s′, s) as a uniform/constant value.

Normalization For each new sample s produced in the current
frame, we calculate its global similarity Π(s′, s) with each sam-
ple s′ in previous frame, and normalize the sum

∑
s′ Π(s′, s) to 1.

Such normalization is to control each Π(s′, s) to be within (0, 1)
and not influenced by the recursion depth in Equation (5).

Refinement As illustrated in Figure 8, the global similarity can
be ambiguous at the initial stage. We thus use subsequent draw-
ings to gradually refine previous global similarities based on the
consistency between matching samples [Huang et al. 2008]. In par-
ticular, we define (s′, s) as a matching pair if Π(s′, s) is over a
threshold value. We then construct graphs of matching pairs by es-
tablishing an edge between two matching pairs (s′i, si) and (s′j , sj)
if s′j ∈ n(s′i) and sj ∈ n(si). As the user draws, we incrementally
construct the graphs based on the above criterion for all matching
pairs. For each matching-pair graph, we compute the whole con-
sistency by summing Π(s′, s) over the graph. The larger the whole
consistency, the more likely the better sample correspondences, and
therefore we use it as a weight to modify each Π(s′, s):

Π̃(s′, s) = Π(s′, s)
∑

(ς′,ς)∈Φ

Π(ς ′, ς), (6)

where Φ is the graph where matching-pair (s′, s) belongs to, and
Π̃(s′, s) is the refined global similarity.

4.3 Prediction Synthesis

We predict the current frame by deforming drawings from the pre-
vious frames. For quality and consistency, the deformation should
(1) maintain the structures and details of previous frames, (2) fit
the drawing in the current frame, (3) observe the motions among
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the frames for temporal coherence, and (4) be general enough for
various drawing styles and contents and yet fast enough for interac-
tion. Based on these considerations, we extend the embedded de-
formation model and optimization method in [Sumner et al. 2007;
Li et al. 2008]. A key for such deformation is establishing cor-
respondences between drawings across frames. Existing matching
methods [Belongie et al. 2002; Li et al. 2008] are designed for suffi-
ciently complete and coherent objects. However, manual drawing is
largely incomplete during dynamic updates, and users may draw the
same object across frames incoherently, such as with different num-
bers, shapes, and orders of strokes. To address these challenges, we
use the global similarity in Section 4.2 to dynamically measure the
confidence of correspondences, similar to the fuzzy correspondence
idea in [Kim et al. 2012].

In describing our method below, we denote s, s′, and s′′ as samples
in the current frame, the previous frame, and the frame before the
previous frame, respectively, as illustrated in Figure 11.

Deformation model We assign an affine transformation m(s′)
for each s′ in order to represent the local deformation on its nearby
space. m(s′) is specified by a 2 × 2 matrix A′ and a 2 × 1 trans-
lation vector δ′, both centered at s′. Under the influence of sample
s′i, each nearby sample s′j is transformed to a new position p̃′ji ac-
cording to:

p̃′ji = A′i
(
p(s′j)− p(s′i)

)
+ p(s′i) + δ′i. (7)

In particular, when s′i equals s′j , p̃′jj can be simplified to p′j + δ′j .

Constraints Similar to [Sumner et al. 2007; Li et al. 2008], our
deformation model includes the rigidity term Er and smoothness
term Es to maintain the structure and details of the drawing in pre-
vious frames, and the fitness term Ef to pull the deformation to-
wards current drawing. Specifically:

Er penalizes the deviation of each A′ from a pure rotation, and is
defined as:

Er =
∑
i

γ(A′i), (8)

where γ(A′) = (aT1 a2)2 + (1− aT1 a1)2 + (1− aT2 a2)2, and
a1 and a2 are the column vectors of A′

Es penalizes transformations that are inconsistent with one an-
other:

Es =
∑
s′i

∑
s′j∈n(s′i)

κij

∣∣∣p̃′ji − p̃′jj

∣∣∣2 , (9)

where s′j is a neighborhood sample of s′i, p̃′ji and p̃′jj are the
deformed position of s′j under influence of s′i and s′j , respec-
tively (Equation (7)). κij is a weight factor measuring the
likelihood that the transformation influence of s′i is consistent
with s′j . As illustrated in Figure 11, the transformation consis-
tency could be measured by the spatial consistency between
s′i and s′j across frames. We use the local analysis in [Xing
et al. 2014] to measure this spatial consistency:

κij = exp

(
−
θ
(
p̂(s′i, s

′
j)
)

θ1

)
, (10)

where the relative position p̂(s′i, s
′
j) is as in Equation (2), and

θ(p̂(s′i, s
′
j)) is its variation across frames (e.g. p̂(s′′2 , s

′′
3 ) and

s1
s2

s3

s'1

s'2 s'3

s"1

s"3s"2

frame 3frame 2frame 1

Figure 11: Motion consistency and prediction. The user has drawn the
first two frames and the black strokes in frame 3. Our system provides hint
(in red strokes) while the user is drawing the blue stroke in frame 3. In
particular, s1 is a sample already drawn by the user, s2 is currently be-
ing drawn, and s3 is predicted by our system. Instead of regularizing the
motion of each sample in frame 2 (e.g. s′1,2,3) to be consistent with one
another (in Equation (9)), those samples with similar motions in frame 1
(e.g. s′′2,3) should maintain similar motions in frame 2 (e.g. s′2,3 but not
with s′1). The stability of relative positions between samples across frames
(e.g. p̂(s′′2 , s

′′
3 ) and p̂(s′2, s

′
3)) can be used to measure the similarity of

their motions (Equation (10)). The predicted hint also observes the motion
in previous frames (Equation (13)), e.g. s3 is shifted from s′3 with a similar
relative motion from s′′3 , as indicated by the red arrows, in addition to the
relative position to s2.

p̂(s′2, s
′
3) in Figure 11). We calculate θ(p̂(s′i, s

′
j)) by averag-

ing the standard deviations of individual vector/matrix com-
ponents:

θ(.) = std(.). (11)

We discuss the parameter θ1 in Section 4.4.

Ef serves as a position constraint so that the deformed shape is
close to the current drawing:

Ef =
∑
s′i

Π̃(s′i, si)
∣∣p(s′i) + δ′i − p(si)

∣∣2 , (12)

where si is the corresponding sample of s′i in the current
frame, and Π̃(s′i, si) is the refined global similarity (Equa-
tion (6)) between s′i and si, as a confidence of their corre-
spondence.

In order for the deformation to observe the motion among frames,
we also add an additional motion constraint term Em based on the
assumption that neighboring frames should have similar motions
(Figure 11):

Em =
∑
s′i

κδ′i

∣∣δ′i − δ′′i ∣∣2 + κA′
i
‖A′i −A′′i ‖2F , (13)

where s′′i is the corresponding sample of s′i in its previous frame
and ‖.‖F is the Frobenius norm. We use the transformation of s′′i
(δ′′i and A′′i ) as the prediction of δ′i and A′i, and use κδ′i and κA′

i
to

measure the quality of such prediction:

κδ′i = exp

(
−θ (δ′i)

θ2

)
, κA′

i
= ϕ1 exp

(
−θ (A′i)

θ3

)
, (14)

where θ is defined in Equation (11). θ2, θ3 and ϕ1 are parameters
discussed in Section 4.4. Since there is no s′′i defined for the first
two frames, we consider Em starting from the third frame.

Correspondence Similar to [Li et al. 2008; Huang et al. 2008],
we need to update the correspondences during the optimization pro-
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cess. Instead of ICP as in these methods, for more accurate corre-
spondence and faster search speed we dynamically update the cor-
responding sample si of each s′i in Equation (12) accordingly to:

si = arg max
s

(
Π̃(s′i, s)

(
ϕ2 + exp

(
−|p̂(s′i, s)|

θ4

)))
, (15)

where s runs through all matching samples of s′i as illustrated in
Figure 8, and |p̂(s′i, s)| is the spatial distance between samples s′i
and s. We choose this formulation so that the correspondence up-
date is dominated by the global similarity term Π(s′, s) when s′

and s are far away, and yet allows local adjustment when they are
close. The values of ϕ2 and θ4 are described in Section 4.4.

Optimization The optimization function to be minimized can be
represented as follows by summing the above constraint terms:

E
(
{m(s′)}

)
= κrEr + κsEs + κfEf + κmEm. (16)

The unknowns comprise the motion parameters {m(s′)} and the
correspondences in Equation (12) for samples between the previ-
ous and current frames. We follow a basic framework of non-rigid
point cloud registration [Li et al. 2008] by alternating, until con-
vergence, the following steps: (1) updating correspondence (Equa-
tion (15)) with {m(s′)} fixed, and (2) refining motion parameters
{m(s′)} via the Levenberg-Marquardt method with the correspon-
dences fixed. Similar to [Li et al. 2008], we adopt a heuristic that
automatically updates the optimization weights to initially favor a
rigid alignment and subsequently lowers the stiffness to allow in-
creasing deformation as the optimization progresses. This is de-
scribed in more details in Section 4.4.

Our system updates the deformation every time the user draws a
new stroke. When the user creates a new empty frame, Equa-
tion (13) controls the deformation as there is no stroke drawn in
the current frame. As the user draws more strokes, Equation (12)
has more influence on the deformation. This means that deforma-
tion will adapt to the current drawing.

Prediction After getting the motion parameters from the opti-
mization process in Equation (16), we can calculate the position
of each sample based on Equation (7). These samples are then in-
terpolated to reconstruct the strokes for prediction.

4.4 Implementation

Sample parameters We sample all strokes with an average of
15-pixel spacing to balance between speed and accuracy. This sam-
pling is uniform at low curvature regions but adaptive at high curva-
ture regions, where the spacing between two neighboring samples
vary between 12 to 18 pixels.

Each term in Equation (1) is represented as a vector without nor-
malization. p(s) is the pixel-wise position within the canvas and
a(s) is an 8-bit RGBA color. The drawing direction at each sam-
ple is not stored, as it can be quickly derived from nearby sample
positions. In Equation (4), we set α = 1 and β = 1 for the calcula-
tion of û (s′, s). To make the neighborhood matching observe the
stroke topology, we set γ = 100 when sample s′ and s belong to
the same stroke, and γ = 0 otherwise.

Neighborhood matching For each sample s, we first extract all
previous samples (in the same frame) within a distance 10% of the
canvas size, then select the nearest 7 samples as its neighborhood
n(s). When matching n(s) with n(s′) in Equation (5), we de-
termine the pairings in Equation (3) by first identifying the pair
(s′j , sj) with largest σ(s′j , sj), excluding them from further con-
sideration, and repeating the process to find the next pair until sj

runs out of samples [Ma et al. 2011]. In particular, we use a partial
neighborhood of n(s) (containing the 5 nearest samples) to match
with the full neighborhood n(s′) to prevent n(s′) from running out
of samples before n(s).

Matching sample Similar to [Xing et al. 2014], we apply an on-
line method to measure the threshold for selecting global matching
samples. Specifically, we find the largest global similarity Πmax

as a reference, and define as matching samples those with global
similarity larger than 0.3×Πmax.

Constraint parameters We set θ1 = 5, θ2 = 5, and θ3 = 0.5
for Equations (10) and (14), and ϕ1 = 50 in Equation (13).

Correspondence parameters In Equation (15), we set θ4 = 20
and ϕ2 = 0.1.

Optimization parameters For Equation (16), we initialize κr =
1000, κs = 15, κf = 10, and κm = 1. κs is halved whenever
|Ek − Ek−1| < 10−1(1 + Ek), where Ek is the cost at the k-th
iteration, until κs < 1. Other weightings are held constant during
the optimization. Since Equation (13) starts from the third frame,
we set κm = 0 for the second frame.

5 User Evaluation

We conducted a preliminary user study to evaluate the usability of
our system by comparing (1) fully manual drawing as in traditional
tools and (2) interactive drawing enabled by our system.

5.1 Procedure

We recruited 2 experienced animation sketching artists and 7 novice
users with different levels of sketching experiences as participants.
All tasks were conducted on a 13-in laptop with a Wacom tablet.
The study consisted of four sessions: warm-up (20 min), target
sketch (50 min), open sketch (20 min), and final interview (10 min).

Warm-up session The warm-up session was designed to famil-
iarize the participants with the interface and various functions of
our system. The tasks consisted of sketching and animating sim-
ple objects, such as a bouncing ball, a swinging flower, or a walk-
ing stick-man. One of the authors gave the participants guidance
throughout the entire process.

Target sketch session The goal is to measure and compare the
objective performance and subjective experience of traditional an-
imation authoring versus our system. We asked our collaborating
artists to create 3 frames of an animated object with initial skele-
tons and final outputs (Figure 12). We then asked the participants
to draw the outlines of all frames first followed by adding the de-
tails and colors, using the initial artist skeletons for start and the
complete artist drawings for reference. Each participant performed
this task both with and without our autocomplete functions, and
the orders of these two conditions were counter-balanced among
all participants.

Open sketch session The goal of this session was to identify
merits of our system in various types of drawings and uncover its
potential usability issues. Participants were free to perform open-
ended drawings using our system with the only requirement of cre-
ating at least three frames. One of the authors accompanied the
participants through the session and encouraged them to try out dif-
ferent features provided by the system.
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(a) skeleton 1 (b) skeleton 2 (c) skeleton 3

(d) outline 1 (e) outline 2 (f) outline 3

(g) finish 1 (h) finish 2 (i) finish 3

Figure 12: Target sketching task. Our participating artists created the
initial skeletons (top row) and final drawings (not shown but similar to the
bottom row). We then ask each participant to sketch the outlines first (middle
row), followed by adding the details and colors (bottom row).

5.2 Outcome

Figure 13 provides quantitative measures of completion time and
stroke counts for the target sketch task in Figure 12. The ratio of
strokes-per-minute by our system versus manual drawing was 1.57
and 3.16 for the second and third frames. The ratio was greater
(4.32) when adding details than when sketching outlines (1.2).

Figure 13 also shows labor reduction − the ratio of autocomplete
strokes accepted by the user to the total number of strokes. The ratio
is 0.62 for outline drawing and 0.97 for details drawing. The labor
reduction measure indicates that our system can help users avoid
a substantial amount of repetition. When asked about comparing
traditional manual with our approach, most participants (8 out of 9)
stated that they easily lost patience to manually add details for each
frame, and our system was able to help them reduce a large amount
of work and maintain better consistency among frames.

Figure 14 summarizes subjective feedback from our participants
about the functionalities in our system. Overall, participants were
satisfied with our system. Seven of the participants commented that
they were able to easily switch between painting, selection, and
timeline preview modes, while the other two participants told us
they sometimes entered the selection mode by accident. The pro-
fessional artists also suggested the addition of motion path predic-
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manual, outline
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3 0 0
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interactive, detail

interactive, outline
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0.4

0.6

0.8

1

frame2 frame3

Labor reduction

outline detail overall

Figure 13: Performance. We mea-
sure the completion time and total # of
strokes (including both manual-user
and automatic-system strokes) for the
tasks in Figure 12 to compare the tra-
ditional manual and our interactive
drawing modes. We also show la-
bor reduction, the ratio of automatic-
system to total # of strokes, as mean
± standard deviation.

1

2

3

4

5
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7

easy to understand

utility easy to use
overall satisfaction

prediction

beautification

propagation

timeline

overall

Figure 14: User feedback. All quantities are expressed as mean ± stan-
dard deviation in a 7-point Likert scale.

tion as it is difficult to design a good motion path without enough
experience, especially for complicated animations.

6 Results and Comparison

We demonstrate how our system can help author hand-drawn an-
imations with higher quality and less effort, by presenting sample
open-sketch results and comparing with 2D shape deformation.

To direct viewers’ attention and save creators’ workload, it is com-
mon to animate only parts of a scene while keeping the rest sta-
tionary. Figure 15 is one such partial-animation example. Here,
an artist drew the first frame of a cartoon character and wanted to
animate only its ears. Since there was only one existing frame, our
system predicted the second frame to be identical to the first one at
the beginning. The artist accepted this stationary hint for the ma-
jority of the character (Figure 15a) and manually updated only the
parts that needed to be deformed or animated (Figure 15b). Our
system could automatically suggest potential beautification based
on past drawings as shown in Figure 15c. After finishing the out-
lines of the animation, the artist started to add details and fill in col-
ors (Figure 15d). This only needed to be done in one frame and our
system automatically propagated and adapted the edits to all other
frames (Figure 15e). As can be seen from Figures 15c and 15f, our
system was able to help reduce manual workload while enhancing
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(a) partial accept initial hint (b) partial animation (c) beautification

(d) fill and detail (e) propagation and refinement (f) finish

Figure 15: Partial-animation example. The user outlines the first frame of a cartoon character (a) and would like to animate its ears while keeping the rest
stationary. This can be achieved by accepting the stationary hint (purple in (a)) while redrawing the ears (red in (a)) in slightly changed shapes (b). Our system
can automatically beautify the drawing to maintain temporal-spatial consistency (c). After finishing the outlines of the whole animation, the user starts to fill
in colors and details to the first frame (d), and our system will automatically propagate and adapt the changes to the other frames (e). The user can accept,
ignore, or modify the suggestions (e). The final result is in (f).

(a) prediction (b) previous (c) predict (d) beautify

(e) 1299/1299 op, 45 min (f) 165/1371 op, 7 min (g) 198/1429 op, 6 min

Figure 16: Rough sketch example. Despite of the differences (e.g. num-
ber and length of strokes) in drawing the same object across frames, our
system can detect the repetitions and establish correspondences to suggest
prediction (e.g. the swing in (a)) and beautification (e.g. the ladder in (d))
with temporal and spatial consistency. (e) to (g) are finished frames with
statistics described in Figure 17.

animation quality.

Unlike the smooth, consistent, and integral curves in Figure 15, Fig-
ure 16 demonstrats a different drawing style with fast, rough, ran-
dom, and short strokes. In particular, a participant drew the same
object with different number, length, or order of strokes across dif-
ferent frames, such as the ladder in Figures 16b and 16c. Even with
such inconsistency, our system was still able to detect the repeti-
tions and establish correspondences to suggest prediction (e.g. the
swing in Figure 16a) and beautification (e.g. Figure 16d).

As demonstrated in Figure 17, our system can support authoring
animations with different complexities and characteristics. As indi-
cated by the statistics, with the assistance enabled by our system, it
generally took much less time and effort to draw subsequent frames
of an animation compared to the first frame. This can help both
novices and professionals to create a variety of sketch-based ani-
mations. As shown in the statistics, each frame often has a differ-
ent number of user- and total-strokes. This reflects the open-ended
nature of our system which facilitates topological changes (e.g. a
broken heart or a growing plant) in addition to geometrical changes
offered by prior deformation-based methods.

Shape deformation has been employed to create 2D animations by
first specifying certain forms of control, such as handles [Igarashi
et al. 2005], cages [Weber et al. 2009], or curves [Guay et al.
2015], followed by manipulating these controls to achieve the de-
sired shape deformation. Specifying and manipulating such con-
trols can become quite tedious for complex deformations or shapes,
and is not very suitable for topological changes such as adding, re-
moving, or breaking objects. Our method, in contrast, treats user
sketches as an implicit form of control, allowing natural interaction
and complete freedom in expression without any restrictions in the
form or flow of sketch. Figure 18 visually compares explicit defor-
mation and our sketching method. Several results shown in the pa-
per are difficult (if not impossible) to author via deformation, such
as the animated shading effect in Figure 12, and the broken-heart,
growing-plant, and walking stick figure in Figure 17.

7 Limitations and Future Work

The core of our system is the analysis and synthesis of drawing
repetitions. Since our current method is built upon the assump-
tion that users draw in a coherent fashion across frames (discussed
in Section 4.2), it is not guaranteed to offer predictions or sug-
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(a) 194/194 op, 4 min (b) 39/115 op, 4 min

(c) 55/78 op, 6 min (d) 42/99 op, 4 min (e) 24/24 op, 4 min (f) 24/30 op, 4 min (g) 27/27 op, 3 min (h) 28/28 op, 2 min (i) 28/30 op, 3 min

(j) 56/178 op, 4 min (k) 120/199 op, 3 min (l) 168/214 op, 5 min (m) 143/223 op, 6 min (n) 183/273 op, 5 min (o) 293/389 op, 6 min

(p) 738/823 op, 34 min (q) 58/863 op, 6 min (r) 68/833 op, 4 min

Figure 17: More results. Shown here are example animation frames produced by participants with our system. Each frame is denoted with the following
statistics: number of manual drawn strokes, total number of strokes (manual + automatically generated by the system), and drawing time in minutes.

gestions users would desire to apply. However, the system is no
worse than animation authoring without any assistance as users can
choose to ignore or modify the suggestions. Our current method is
hand-crafted to offer interactive performance, but its quality could
be further enhanced by machine learning techniques which have
shown promises in text and hand-writing synthesis [Graves 2013].

Our current implementation and user study are based on a pen-input
system (Wacom tablet). We plan to deploy a touch-screen version
of our system to further evaluate and refine its usability for mo-
bile devices. This also allows the possibility of crowd-sourcing
[Limpaecher et al. 2013] to help learn and create animations.

Our current user interface provides only the temporal extension of
the hint mode in [Xing et al. 2014]. Temporal extension of the
clone mode in [Xing et al. 2014] could be achieved via algorithm
components in Section 4. Such spatial-temporal clone can be useful
for scenarios such as creating a large herd of creatures from a single
animated one. We leave this as a potential future work.
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HORNUNG, A., AND SÝKORA, D. 2013. Painting by feature:
Texture boundaries for example-based image creation. ACM
Trans. Graph. 32, 4 (July), 116:1–116:8.

MA, C., WEI, L.-Y., AND TONG, X. 2011. Discrete element
textures. ACM Trans. Graph. 30, 4 (July), 62:1–62:10.

MILLIEZ, A., NORIS, G., BARAN, I., COROS, S., CANI, M.-P.,
NITTI, M., MARRA, A., GROSS, M., AND SUMNER, R. W.
2014. Hierarchical motion brushes for animation instancing. In
NPAR ’14, 71–79.

MYERS, B. A., LAI, A., LE, T. M., YOON, Y., FAULRING, A.,
AND BRANDT, J. 2015. Selective undo support for painting
applications. In CHI ’15, 4227–4236.

NANCEL, M., AND COCKBURN, A. 2014. Causality: A concep-
tual model of interaction history. In CHI ’14, 1777–1786.
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