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Auth ’n’ Scan: Opportunistic Photoplethysmography in Mobile
Fingerprint Authentication

TAKAHIRO HASHIZUME, TAKUYA ARIZONO, and KOJI YATANI, The University of Tokyo, Japan

Recent commodity smartphones have biometric sensing capabilities, allowing their daily use for authentication and
identi�cation. This increasing use of biometric systems motivates us to design an opportunistic way to sense user’s
additional physiological or behavioral data. We de�ne this concurrent physiological or behavioral data sensing during
biometric authentication or identi�cation as dual-purpose biometrics. As an instance of dual-purpose biometrics, we
develop photoplethysmography (PPG) sensing during mobile �ngerprint authentication, called Auth ’n’ Scan. Our system
opportunistically extracts cardiovascular information, such as a heart rate and its variability, while users perform phone
unlock of a smartphone. To achieve this sensing, our Auth ’n’ Scan system attaches four PPG units around a �ngerprint sensor.
The system also performs noise removal and signal selection to accurately estimate cardiovascular information. This paper
presents the hardware implementation and signal processing algorithm of our Auth ’n’ Scan prototype. We also report our
system evaluations with 10 participants, showing that, despite a little low precision (a standard deviation of 3–7), estimation
of heart rates with high accuracy (under a mean error of 1) is possible from PPG data of �ve seconds and longer if their
baseline information is given. We discuss the feasibility of opportunistic PPG sensing in mobile �ngerprint authentication.
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1 INTRODUCTION
Recent identi�cation and authentication systems employ biometrics, physiological, or behavior data that are
distinctive among individuals. Such biometric authentication has become commodity in recent computer devices.
For instance, it can allow smartphone users to unlock their devices with �ngerprints, reducing the e�ort for
entering codes or passwords. Prior work has also revealed that users positively received biometric authentication
systems [6, 9]. A report claims that users who own smartphones with a �ngerprint authentication capability
unlock their devices 80 times a day through biometrics [5]. We believe that future ubiquitous and mobile systems
would further integrate biometric authentication/identi�cation, encouraging its use in a daily life.

This increasing use of biometric authentication motivates us to design an opportunistic way to sense user’s
additional physiological or behavioral data. For instance, when users unlock a smartphone, a system can
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Fig. 1. A concept illustration of dual-purpose biometrics. Dual-purpose biometrics enables concurrent physiological or
behavioral sensing during biometric authentication or identification. This sensing mechanism o�ers an opportunistic and
unobtrusive way to acquire healthcare information as well as encourages the use of authentication/identification systems
through additional applications enabled.

sense physiological data (e.g., vital information, respiration or perspiration) besides �ngerprints. Extracted
data can bene�t a wealth of applications, including life-logging, personal informatics, and healthcare monitoring.
We de�ne this concurrent physiological or behavioral data sensing during biometric authentication or
identi�cation as dual-purpose biometrics. Figure 1 illustrates a conceptual comparison between existing biometric
authentication/identi�cation systems and dual-purpose biometrics.
Dual-purpose biometrics can o�er unique bene�ts to existing biometrics systems. Additional applications

enabled by dual-purpose biometrics may encourage more use of biometric authentication/identi�cation systems.
As dual-purpose biometrics systems perform sensing during authentication or identi�cation, users would not need
to perform separate explicit data recording or wear additional devices. This may lead to improved compliance of
data collection.

In this work, we demonstrate a system that senses user’s cardiovascular data during �ngerprint authentication
on a smartphone as an instance of our dual-purpose biometrics concept. Our system, called Auth ’n’ Scan,
utilizes custom-made hardware containing multiple photoplethysmography (PPG) sensors. We design them to
surround the �ngerprint sensor on a smartphone. In this manner, users can record their cardiovascular data
during authentication1, and do not need to perform separate explicit measurements. Because our system enables
sensing at di�erent times of the day, it can obtain information that otherwise is di�cult to infer, such as heart rate
changes due to the circadian rhythm [35] and distribution transition in a Poincaré plot (discussed in Section 8.3).

Besides the proposal of dual-purpose biometrics, the main objective of this work is to demonstrate the feasibility
of concurrent sensing of �ngerprints for authentication and cardiovascular data for healthcare monitoring
applications. When users place �ngers for unlocking smartphones with their �ngerprints for at least �ve seconds,
our system extracts short-term cardiovascular features, such as a heart rate and its variability, with PPG sensors.
In addition, the Auth ’n’ Scan system reconstructs longer-term features (e.g., a feature in a Poincaré plot) from
a series of fragmented measurements if the sensing duration of ten seconds is allowed. Although our current
prototype needs at least �ve seconds of recording for accurate heart rate estimation, the majority of participants
in our user study agreed that it is acceptable at the exchange of the bene�t by Auth ’n’ Scan.

1In this work, we mainly refer to authentication scenarios though our concept and system can be applied for identi�cation systems.
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The contributions of this work are as follows:

Our proposal of the dual-purpose biometrics concept
We introduce the concept of dual-purpose biometrics. As summarized in Figure 1, dual-purpose biometrics
systems enable both authentication/identi�cation and unobtrusive sensing for additional applications. This
capability is bene�cial for security systems (e.g., encouraging more use of them) as well as sensing (e.g.,
unobtrusively acquiring users’ data).

Hardware for concurrent �ngerprint and cardiovascular sensing on a smartphone
We develop custom hardware to attach four PPG units to the periphery of a �ngerprint sensor on a
smartphone. Our informal evaluation con�rms that our hardware design is robust to di�erent �nger
placement and ambient light conditions.

Cardiovascular feature inference from short-term PPG data
Our algorithm selects a signal among four PPG channels that can best describe cardiovascular information. It
then extracts heart rates and peak-to-peak intervals from that signal. In addition, our algorithm attempts to
reconstruct a Poincaré plot, comprised of pairs of two adjacent PPIs, from a set of fragmented measurements.

System and user evaluations of Auth ’n’ Scan
We conducted system evaluations with 10 healthy adult participants. Our results achieved heart rate
estimation from data in the duration of 5 seconds or longer if the baseline heart rate data of each participant
is given. More speci�cally, the estimation error was within 1 and its standard deviation was between 3 and
7. In addition, we con�rm that reconstruction of Poincaré plots is possible for some of our participants
though a su�cient number of adjacent PPI pairs are necessary. Our participants agreed that a 5-second
sensing duration was acceptable because Auth ’n’ Scan o�ers heart rate information.

2 DUAL-PURPOSE BIOMETRICS
Auth ’n’ Scan is an instance of dual-purpose biometrics, our security system concept proposal. Dual-purpose
biometrics represents an identi�cation or authentication system which simultaneously senses users’ physiological
or behavioral data for additional purposes, such as healthcare monitoring and life-logging (Figure 1). Users
frequently engage in activities that require authentication in a daily life (e.g., unlocking a smartphone, opening an
o�ce’s door, and placing an order in an online system). Various biometrics authentication systems become
available in these scenarios. Dual-purpose biometrics exploits these increasing biometrics authentication
interactions as sensing opportunities. In this work, we demonstrate cardiovascular sensing in mobile �ngerprint
authentication for phone unlock as an example of dual-purpose biometrics. Future work should explore a broader
area of dual-purpose biometrics (e.g., skin moisture sensing in authentication with �ngers or hands; heart rate
sensing in face authentication; and throat disorder detection in voice-based authentication).
Dual-purpose biometrics aims to encourage the use of authentication systems by providing additional

applications it enables. Sasse and Flechais discussed the role of security systems through the lens of human
factor analysis [36]. In a goal-oriented process, there are two types of tasks: production tasks (tasks that are
necessary to complete to achieve the goal) and supporting tasks (tasks that are not directly essential to achieve
the goal but would provide value or useful functionality for a production task). This analysis can explain why
users often circumvent or disable security systems. According to Sasse and Flechais’ argument, security is a
supporting task. Although security provides protection value, it does not directly contribute to a production
task or o�er merits immediately perceivable to users. Thus, security systems may become a burden, resulting
in its abandonment. In dual-purpose biometrics systems, authentication can become a production task for the
other purposes. For example, a phone unlock would become an interaction to record heart rate information for
a healthcare application. In this manner, users can obtain more direct bene�ts from security systems besides
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protection. We hope that dual-purpose biometrics would contribute to further persuasion and penetration of
daily security system use.

Dual-purpose biometrics is also regarded as another form of unobtrusive sensing for daily healthcaremonitoring.
Some existing healthcare monitoring systems involve explicit measurements of physiological data or user activities
(e.g., using a blood pressure monitor or making manual annotations upon smoking). Prior work has addressed this
issue in the context of experience sampling [18]. Such measurement burden could also degrade user compliance
and data reliability in healthcare monitoring applications. One possible solution is unobtrusive sensing, a
technology which performs sensing while users are engaging in a main task [23]. Although unobtrusive sensing
is promising to reduce user’s burden, Korhonen et al. discussed the following three challenges: 1) a requirement
for user identi�cation; 2) limitations on continuous monitoring; and 3) constrained sensing capabilities of
physiological data. Our dual-purpose biometrics uniquely solves the �rst and third issues. As dual-purpose
biometrics concurrently performs authentication and sensing, user identi�cation can be immediately given under
the user’s permission. Upon biometric authentication, users are asked to steadily expose part of the body. A
system thus has a su�cient opportunity to acquire various physiological data (e.g., cardiovascular information in
the Auth ’n’ Scan system). Dual-purpose biometrics broadens the �eld of unobtrusive sensing, and encourages
further research in creative exploitation of biometric authentication.
Although it is beyond the scope of this work, dual-purpose biometrics can also contribute to multimodal

biometrics [33]. Multimodal biometrics means using multiple physiological or behavioral traits to improve
security robustness. Dual-purpose biometrics is di�erent in enabling additional applications instead of reinforcing
security. But future dual-purpose biometrics systems could o�er unique security enhancement (e.g., ECG data
can be another evidence for user authentication [34]).

3 RELATED WORK
3.1 Fingerprint Sensing Technology
A �ngerprint is a pattern formed by friction ridges observed in epidermis. As �ngerprint patterns are considered
to be distinctive and immutable, they are widely used in authentication. Fingerprints can be found in several
locations of a human body, such as a palm and foot, but those in �ngertips are the most common part for security
system use. Although prior work has studied various matching methods, a typical approach is to use feature
points called minutiae [19]. Minutiae refer to ridge endings and bifurcations in a �ngerprint pattern. A typical
�ngerprint image contains 20–70 minutiae points [19]. Based on the location and orientation of each minutia,
a matching algorithm calculates similarity between a given �ngerprint and those in a database, and performs
identi�cation (i.e., determines who this user is) or authentication (i.e., judges whether this user is really the
person who she claims to be) [32].
A broad range of �ngerprint sensing approaches exists: optical, capacitive, RF-based (radio frequency),

pressure-based, thermal, and ultrasonic sensors [31]. An RF-based method is considered to be the most accurate
and reliable [39]. An RF �ngerprint sensor consists of a 2D array of tiny antennas each of which produces
reading of the depth of a point. Because of the ability to capture �ngerprint images beneath the skin, the RF
array-based �ngerprint sensor technology is robust to di�erent skin conditions, environments, and even minor
�nger surface contamination [39]. Since Apple integrated this type of sensors into iPhone 5S in 2013, �ngerprint
authentication on smartphones becomes common. De Luca et al. showed that one of the main decision factors
to enable biometrics on smartphones is its usability [9]. Another study reported that people prefer �ngerprint
authentication to face recognition or traditional password-based approaches for phone unlocking because of
its usability [6]. According to Apple’s report in 2016, 89% owners of iPhones and iPads with a �ngerprint
authentication capability regularly used the Touch ID service [5]. This report also showed that they unlocked
their devices with Touch ID roughly 80 times a day on average. Recent research has demonstrated broader
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applications of mobile �ngerprint authentication. Holz et al. developed on-demand biometrics, an alternative way
to log into an online service that replaces textual passwords with �ngerprint authentication on a user’s mobile
phone [16]. We believe that �ngerprint authentication will be even more common in various devices and systems.
Although the present demonstration of Auth ’n’ Scan is on a smartphone, our contributions are conceptually
applicable to other form-factors.

3.2 Fingerprint-based Interaction
HCI research has explored several methods to exploit �ngerprints to enable novel interfaces. An early example of
�ngerprint recognition use for interaction techniques was a �ngerprint user interface demonstrated by Sugiura
et al. [41]. A contact to their device executed a command uniquely assigned to each �nger. Their system utilized
a �ngerprint authentication mechanism to distinguish user’s �ngers. RidgePad used �ngerprint recognition to
improve touch accuracy by identifying a user and estimating her �nger posture [14]. Based on the information, it
can estimate the user perceived input point which is a little displaced from the actual contact location. In this
manner, RidgePad obtained 1.8 times higher accuracy than the conventional touch input. Fiberio is a tabletop
touchscreen system that authenticates users during touch interaction with their �ngerprints [15]. They used a
�ber optic plate which o�ers both specular re�ection and di�use transmission in order to capture �ngerprints and
display images simultaneously. This system enables a wide range of tabletop interactions with user identi�cation
or authentication.
Although our current main scenario is �ngerprint authentication on smartphones, integration of a similar

concept to dual-purpose biometrics into the systems above could be possible. For instance, a future FUI [41] could
sense cardiovascular data every time a user executes a command. Our work contributes to demonstrating the
feasibility of gathering physiological data through a short-time interaction (i.e., authentication in this project).

3.3 Unobtrusive Cardiovascular Sensing
Prior work has investigated unobtrusive approaches to sense user’s cardiovascular data. Kang et al. developed
a mobile electrocardiogram (ECG) monitoring system on a smartphone, called Sinabro [21]. They attached
multiple electrodes at the front and back of a smartphone. Sinabro measures the user’s ECG when she makes
contacts with her left and right body parts. Gri�ths et al. integrated an ECG-based heart sensing technique to
a chair [13]. Health Chair acquires ECG through electrodes attached to the armrests. One major limitation of
ECG sensing is that it requires multiple physical contacts with bare skin. Gri�ths et al. found that Health Chair
was able to extract user’s heart rate information for even shorter than 1% of typical o�ce hours (i.e., 8 hours) in
their study. Sinabro requires users to hold a device with both hands, and some users may prefer such bimanual
possessing [11]. However, one-handed interaction is also common in mobile touch-screen devices [22]. Thus,
sensing opportunities can greatly vary depending on their device holding preferences. Our Auth ’n’ Scan system
allows cardiovascular sensing during �ngerprint authentication, and can co-exist with Sinabro.

Prior research has examined alternative approaches to cardiovascular sensing. One method is to use re�ection
of radio frequency waves. Adib et al. developed Vital-Radio, which can monitor breathing and heart rates of
multiple people without physical contacts with the sensor [2]. Their system can detect respiration and heartbeat
changes from signals re�ected on users’ bodies. BodyScan is a wearable system that recognizes various user’s
activities and status including heart rates [12]. It consists of a wristwatch-like radio transmitter and receiver with
a holster. The system uses the intensity of radio signals to infer user’s heart rates.

Research has also investigated vision-based approaches to detecting heart rates. Mauka-Mauka used anWebcam
attached to a worker’s laptop and con�rmed the feasibility of unobtrusive heart rate sensing in a workplace
environment [40]. Poh et al. developed a Webcam built-in mirror which detects a user’s heart rate while she is
looking [30]. Wu et al.’s image processing method, called Eulerian Video, can also extract heart rates and possibly
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other cardiovascular information from images of a person taken by an unmodi�ed camera [44]. Although these
vision-based methods are very promising, image capturing can be inappropriate or even prohibited at public
contexts. Thus, non-vision approaches can be more appropriate for mobile cardiovascular sensing.

Researchers have explored the use of inertial sensors for mobile cardiovascular sensing. Aly et al. developed a
respiratory rate estimation system, called Zephyr, using accelerometer and gyroscope sensors of a smartphone [4].
When a user places her smartphone onto her chest, Zephyr captures the chest movements caused by breathing.
Mohamed et al. expanded this method to enable heart rate estimation [26]. Their system, HeartSense, also captures
users’ chest movements using an o�-the-shelf smartphone, but it only uses gyroscope sensor data based on
observations on heart motion mechanisms. These methods are robust and accurate, and do not require any
additional hardware equipment. However, measurements with these systems require users to perform explicit
interaction (i.e., users have to be still and keep their smartphone on their chests).
PPG is also an optical approach though image capture and processing are not necessary in general. Another

advantage of PPG sensors is that their form-factor can be small (e.g., one pair of an LED and photo-detector).
Chigira et al. integrated a PPG sensor into a tumbler [8]. It can detect a user’s heart rate during beverage
consumption. Poh et al. and Holz et al. demonstrated integration of PPG sensors into an earphone [29] and
glasses [17], respectively. These devices enable continuous cardiovascular sensing while users are wearing them.
These projects demonstrated a potential of PPG sensors. But PPG sensors are susceptible to ambient light, and
use scenarios in the projects above are limited to dark conditions. For example, a user’s hand holding the tumbler
blocks PPG sensors from ambient light [8]. E�ect by ambient light is negligible inside an ear canal [29]. A PPG
sensor is a promising approach, but its use under a normal light condition is challenging.

3.4 Summary
We discussed the literature about �ngerprint-related technology and interfaces as well as unobtrusive
cardiovascular sensing. Although much research on these areas exists, one of our contributions is to exploit
�ngerprint authentication for phone unlock to perform cardiovascular sensing through PPG. Our work is similar
to Chigira et al.’s project in terms of exploiting user’s frequent activities as a sensing opportunity. As we already
discussed in the previous section, our dual-purpose biometrics concept can address two of the major challenges
in unobtrusive sensing. This work contributes to broadening the �eld of unobtrusive sensing and applications of
biometric technologies.

Exploiting phone unlock for data collection has also been investigated. Truong et al. demonstrated an interface
to replace an unlock slider with swipe gestures for completing microtasks [42]. This interface design allows
smartphone users to participate in lightweight data collection about themselves and their contexts. Vaish et al.
explored a similar concept for microtask crowdsourcing [43]. Similar to these projects, Auth ’n’ Scan exploits
phone unlock for physiological sensing, which would bene�t a variety of healthcare applications.

4 PHOTOPLETHYSMOGRAPHY (PPG)
We use photoplethysmography (PPG) in the current Auth ’n’ Scan prototype. PPG requires physical contacts, but
it can be acquired from a single sensing location unlike ECG. Furthermore, its hardware can be simple and easily
downsized. This characteristic is desirable in our main use scenario (i.e., phone unlock with �ngerprints), and we
decided to use PPG in this work though other technologies can be considered in future work. In this section, we
explain its principle and physiological information derived from PPG signals.

4.1 Sensing Principle
PPG is an opto-electrical and non-invasive measurement technique that can detect blood volume changes in the
microvascular bed of tissue [3]. A simple construction of a PPG sensor comprises an LED and photo-detector. A
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PPI

Peak
Trough

Fig. 2. An example of a photoplethysmography signal with CMS-50E. The output can take a discretized value between 0 and
127. Peaks, troughs, and a PPI are annotated.

periphery of the body, such as a �ngertip or earlobe, is a commonly-used contact point for PPG. Light from the
LED is partially re�ected on the skin, and captured by the photo-detector. When blood volume changes occur,
the amount of light absorption varies. The photo-detector then detects this variability as an electrical signal.

One of the most commonmedical applications of PPG is pulse oximetry which can monitor oxygen saturation as
well as heart rates in a non-invasive manner. Oxyhemoglobin and deoxyhemoglobin exhibit di�erent absorption
performance of red and infrared light. A pulse oximeter utilizes this phenomenon to determine the proportion
of hemoglobin bound to oxygen [7]. We used CMS-50E, an FDA-approved �ngertip pulse oximeter, to obtain
ground truth PPG signals.
Figure 2 shows a typical waveform gained through CMS-50E with an adult who does not have any major

cardiovascular disease. As shown in this �gure, a PPG waveform in general demonstrates periodical repetitions.
Features in the PPG waveform are denoted as follows:

Peak A local maximum in one cycle.
Trough A local minimum in one cycle.
Peak-to-peak interval (PPI) A time interval between two adjacent peaks.

4.2 Physiological information derived from PPG signals
From raw PPG signals, we can obtain the following physiological information bene�cial for personal healthcare
applications.

Heart Rate It is derived from the number of peaks per minute. It is one of the most frequently-used
cardiovascular features.

Heart rate variability (HRV) It is calculated as the variance of PPIs. It is regarded as a useful feature for
assessing an autonomic nervous system.

Poincaré plot It is a plot of two adjacent PPI values. The distribution can be indicative of heart
dysfunction [20].

Acceleration plethysmogram It is the second derivative of PPG signals. It can indicate distensibility of the
peripheral artery.

Respiration rate It is derived from the frequency of an envelope wave of PPG signals. It is another common
cardiovascular feature.

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 137. Publication date:
December 2017.



137:8 • Takahiro Hashizume, Takuya Arizono, and Koji Yatani

Fig. 3. A Poincaré plot generated from PPI data. The shape of the plot can be indicative of a person’s heart functionality.

Heart rate variability (HRV) is traditionally derived from ECG, but medical research shows that HRV is reliably
estimated from PPG [38]. HRV is a well-used feature for assessment of autonomic nervous system dysfunction, but
this information can lead to additional observations on cardiovascular activities through a Poincaré plot. In this
plot, each point represents two adjacent PPI values. Figure 3 illustrates an example Poincaré plot generated from a
�ve-minute long PPG signal with a healthy adult user. A Poincaré plot with healthy users normally demonstrates
a distribution that can be approximated as 2D Gaussian [20]. But patients with heart dysfunction can exhibit
skewed or dispersed distributions. In general, the creation of a Poincaré plot requires su�ciently-long sampling of
PPI, generally for �ve minutes. Such long sampling is unfortunately impossible in our target application because
users would place their �ngers for phone unlock only for a couple of seconds. This work examines feasibility to
reconstruct a Poincaré plot from a set of short PPG signals.
In a Poincaré plot, SD1/SD2 is considered to be one of the most important features. SD1 is the standard

deviation of the di�erences of two adjacent PPIs. SD2 is the root of the subtract of (SD1)2 from the variance of
PPIs. SD1/SD2 is a ratio of these two values. Medical research shows that this metric varies for people with heart
or cardiovascular disease [1], and we examine the feasibility of Auth ’n’ Scan to extract this feature.

5 SENSOR HARDWARE
5.1 Implementation
To instantiate the concept of dual-purpose biometrics in mobile �ngerprint authentication, we developed a custom
PPG sensor circuit. Our circuit is designed to place LEDs and photo-detectors around the �ngerprint sensor in a
commercially available smartphone. We had the four design considerations in our hardware.

DC-A. Co-existence with a �ngerprint sensor :
Our system performs physiological sensing during �ngerprint authentication. As the main application
still lies in authentication, our hardware should not degrade or compromise its performance and accuracy.
Existing PPG sensors are designed for users to place �ngers at the center, but this would not be feasible in
our use case. Thus, our hardware should sense PPG from the side of a user’s �nger.

DC-B. Sensing under a normal light condition:
Many PPG sensors function well under su�ciently dark conditions created by �nger occlusion or with
covers. However, achieving such a dark condition is di�cult in typical mobile �ngerprint authentication
scenarios. Our sensors, thus, have to function even under a normal light condition.
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Fig. 4. The circuit schematic of our PPG sensor unit. We introduce Zener diodes into negative feedback of an op-amp to
avoid signal saturation.

Fig. 5. A comparison of an output from our sensor (red),
that from the original PulseSensorAmped (green), and the
derivative of a PPG signal obtained from CMS-50E (yellow).
Note that PulseSensorAmped and a PPG sensing unit in
our circuit board return a discretized value between 0 and
1023. The plot of PulseSensorAmped includes negative values
caused by a band-pass filter.

Fig. 6. A comparison between an output from our sensor
(red) and the derivative of a PPG signal obtained from
CMS-50E (yellow). The two signals resemble well.

DC-C. Noise and individual di�erence robustness:
Users may put their �ngers on a �ngerprint sensor di�erently. For instance, users may use a thumb because
it allows one-handed interaction, but others may prefer using an index �nger. Such a variation can occur
even within the same user (e.g., a person may switch to another thumb for unlock). Even if people use the
same �nger, placement may be di�erent in each authentication trial. Our hardware thus should be able to
acquire PPG signals regardless of the user’s �nger placement.

DC-D. Instant sensing activation upon touch:
Because authentication with �ngerprint takes only a couple of seconds, our sensor should acquire PPG
signals immediately after users place �ngers.
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Prior work investigated di�erent PPG sensor hardware designs for accurate signal acquisition [3]. However,
no circuit design has achieved consensus among the research community. We decided to utilize the
PulseSensorAmped [27] hardware for our sensor design. It is an open source PPG sensor project, and its hardware
design achieves reliable signal acquisition even under ambient light noise. This hardware includes a di�erential
ampli�er with an op-amp, and a raw signal is normalized at 2.5 V and ampli�ed. However, our preliminary
investigation found that PPG signals from PulseSensorAmped were saturated for the �rst few seconds of sensing.
When users place a �nger on the sensor, a drastic brightness change occurs, which is the main cause of this signal
saturation. This is undesirable because a sensing duration in our use scenario is limited.
To avoid saturation, we added two Zener diodes (AZ23C3V3-7-F, 3.3V) to the feedback loop of the negative

input channel of an op-amp. Figure 4 shows the circuit schematic of our PPG sensor. With these Zener diodes, the
ampli�cation rate of this circuit becomes zero when the output voltage would become beyond the range of 0–5 V
otherwise. In this manner, our circuit achieves an appropriate gain even when drastic changes in light intensity
occur. In addition, we maintain the robustness that the original PulseSensorAmped has. Figure 5 illustrates
an example observation of PPG signals obtained through PulseSensorAmped and our sensor. We also added a
capacitive sensor to the surface of the sensor. This sensor enables instant activation of the PPG sensors. We
measured the activation time with an oscilloscope, which turned out to be approximately 300 �secs. Thus, our
hardware design satis�es the design considerations of DC-B and DC-D.
As our circuit and PulseSensorAmped include di�erential operations, the appearance of the signal from our

sensor is di�erent from a wave shown in Figure 2. Figure 6 shows a comparison between our sensor output and
the �rst derivative of a signal obtained from CMS-50E. We did not conduct a formal quantitative analysis on the
similarity between two signals. However, our preliminary examination con�rmed that peaks in at least one of
PPG signals correspond well with those in the ground truth. We report accuracy performance of heart rates and
HRV from PPG signals in a later section.

Figure 7 (C, D) shows the circuit board of our sensor. This circuit board has a space at the top center to �t to the
�ngerprint sensor on a smartphone (Nexus 5X). The �ngerprint sensor on Nexus 5X is attached to the backside
of the device. For DC-A and DC-C, we place four PPG sensing units to surround the �ngerprint sensor instead of
installation at a single particular location. Figure 7 (A, B) shows an installation example of our hardware to Nexus
5X. In our current prototype, the sensor is connected to an external computer though more direct integration
into a smartphone is possible.

Figure 8 illustrates an example of four PPG signals with our sensor. In this example, Channel 4 demonstrates
the most similar waveform to the ground truth (the �rst derivative of CMS-50E signals). A channel which exhibits
the most desirable signal is di�erent depending on how users place a �nger. Our signal processing module
automatically selects such a signal as well as extracts features from the raw data, which we explain in the next
section.

5.2 Informal Hardware Evaluation
We conducted two informal evaluations to validate the robustness of our sensor against ambient noise and �nger
placement. We used CMS-50E to obtain ground truth data in each experiment.

5.2.1 Ambient light robustness. We recorded PPG signals with our sensor for 10 seconds under the 5 di�erent
ambient light conditions. The �ve conditions included two outdoor and three indoor settings, and the light
intensity ranged from 0 to 17280 lux.

Figure 9 shows experimental settings and PPG signals acquired. Signals for the �rst 1500 ms are removed due
to large amplitude �uctuation caused by �nger contacts as explained in Figure 8. Our informal test revealed that
at least one channel in the sensor demonstrates clear peaks that correspond to the ground truth signal (in yellow)
in all conditions. Even under the brightest ambient light condition (the daytime outdoor setting), the peaks in the
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Fig. 7. Our Auth ’n’ Scan prototype hardware. (A) Our current prototype is designed for Nexus 5X. (B) The back view of the
device. The circuit board places four PPG sensing units around the fingerprint sensor. (C) The back of our circuit. (D) The
front of our circuit (without the touch sensor). The LEDs and photo-detectors are designed to be exposed.

Fig. 8. An example of four PPG signals with our sensor and the first derivative of CMS-50E’s output. In this example, the
fourth channel (light blue) demonstrates clear peaks that correspond to those in the ground truth signal (yellow) well.

signal in Channel #2 (in green) match well to the ground truth. We thus concluded that our sensors are robust
enough under various ambient light conditions.

5.2.2 Finger placement robustness. We also tested how di�erent �nger placement could impact on PPG
signals. Similar to the previous informal evaluation, we recorded PPG signals for 10 seconds with 5 di�erent
�nger directions illustrated in Figure 10a. We con�rmed that the smartphone could be successfully unlocked by
�ngerprint authentication at all directions. Measurements were performed under a normal indoor light condition.
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(a) The daytime outside condition (17280 lux). (b) The evening outside condition (2390 lux).

(c) The bright indoor condition (with both sunlight and room
light; 621 lux).

(d) The shadowed indoor condition (with sunlight through
a window only; 18 lux).

(e) The dark indoor condition (0 lux).

Fig. 9. PPG signals under five di�erent ambient light conditions. At least one channel in the sensor demonstrates clear peaks
that correspond to the ground truth signal (in yellow) in all conditions.

Figure 10 (b⇠f) shows PPG signals acquired under each condition. Again, at least one channel in the sensor
shows clear peaks that correspond to the ground truth signal in all conditions. In our current prototype with Nexus
5X, Direction B and D (�gure 10c and 10e) are the most likely �nger placement for unlocking with �ngerprints.
As �nger directions vary, the channels which exhibit clear peaks also change (Channel #1 and #2 for Direction B
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(a) The five finger directions tested. (b) Direction A.

(c) Direction B. (d) Direction C.

(e) Direction D. (f) Direction E.

Fig. 10. PPG signals under di�erent finger placement conditions. (a): We tested five directions. (b) to (f): Similar to the
robustness test against di�erent ambient light, the sensor captured clear peaks at least one channel.

and Channel #3 and #4 for Direction D). This informal study thus validates our sensor design and con�rms the
robustness against di�erent �nger placement.
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6 SENSING ALGORITHM
Although our hardware enables immediate PPG sensing when �nger contacts are made, acquired data may have
some noise as seen in Figure 5. In addition, a sensing duration in our target use scenario is limited to at most a
few of seconds unlike conventional PPG systems. We thus need novel PPG signal processing; more speci�cally,
our algorithm has to accurately infer a heart rate and HRV given four few-second PPG signals.

We conducted a pilot study to be informed of the algorithm design. We recruited �ve people and asked them to
record PPG data with our hardware from the index �nger of their dominant hands. After close examinations on
the collected data, we obtained two major �ndings: 1) at least one of the four channels provided clear peaks and
good correspondence with the ground truth; 2) such a channel was consistent during sensing. In this example of
Figure 8, Channel 4 exhibits the clearest signal, but the other channels show noisy signals. The channel which
o�ers the clearest signal varies depending on how users place �ngers. But our hardware captures seemingly
reliable signals at least one of the channels in most cases. In addition, the most desirable channel does not change
within one sensing trial. This is because users do not move �ngers or hands; otherwise, authentication may fail.
Thus, our algorithm needs to choose the most desirable channel which leads to accurate inference of heart rates
and HRV. To the end, it executes two kinds of processing within and across the channels: 1) �nding the earliest
point from when PPG gives most plausible results of heart rates and PPIs within each channel; and 2) choosing a
channel that shows most peak points and plausible PPI data. In the following explanation, we suppose that the
system has obtained four PPG signals for the duration of T seconds. We also denote the signal data of Channel #i
between time of t1 and t2 as Di [t1, t2] (i = 1, 2, 3, 4).
The algorithm �rst determines the earliest point (� i ) from which PPG signals provides plausible heart rates

and PPI information in Channel #i . Our algorithm applies a bandpass �lter between 0.5 and 3 Hz to a raw signal
in each channel. This frequency range corresponds to a heart rate between 30 and 180 per minute. The algorithm
assumes that major noise caused by initial �nger placement occurs at most within the �rst half (between 0 and
T /2 seconds) of the entire signals. With this assumption, it extracts Di [t ,T ] by varying t from 0 toT /2 by 200 ms
(i.e., t 2 {0, 200, 400, ...,T /2}).

For each Di [t ,T ], it then performs peak detection with the Automatic Peak Detection in Noisy Periodic and
Quasi-Periodic Signals method [37]. The algorithm calculates the number of the detected peaks (P i (t)) as well
as the mean and standard deviation of the observed PPIs. We then derive a relative standard deviation of the
observed PPIs, de�ned as a ratio of the standard deviation over the mean, denoted as CV i

ppi (t). We also calculate
the relative standard deviation of all the peak height values in Di [t ,T ], denoted as CV i

ph(t).
After statistics for all Di [t ,T ] are calculated, the algorithm next searches � i using P i (t), CV i

ppi (t) and CV i
ph(t)

for each t . The algorithm calculates the mean and standard deviation from all values of CV i
ppi (t). It then removes

all t such that CV i
ppi (t) is beyond one standard deviation from the mean. As this �ltering adaptively changes its

threshold, we expect that the system could accommodate data obtained from patients with heart or cardiovascular
disease. Similarly, the algorithm removes all t such that CV i

ph(t) is beyond one standard deviation from the mean.
A large spike is often observed at the time when a user has made a contact on the �ngerprint sensor. This �ltering
aims to remove signals which contain such drastic �uctuations.
In the remaining set of t , the algorithm further selects t with which Di [t ,T ] contained the largest number of

peaks. The largest value among such a set of t is chosen as � i . This is intended to avoid �uctuations that occurred
near the beginning of sensing (caused by a �nger contact). After choosing � i for each channel, the algorithm
selects a channel which exhibits the lowest value of CV i

ppi (� i ) ⇥ CV i
ph(�

i )/P i� i (i.e., a channel which contains
many peaks, and stable PPI and peak height).
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Table 1. Tasks in each data collection session.

Data collection Tasks
Session #1 ShortNormal ⇥ 6 times

LongNormal ⇥ 1 time
Session #2 ShortNormal ⇥ 6 times
Session #3 ShortHigh ⇥ 6 times
Session #4 ShortNormal ⇥ 6 times
Session #5 ShortNormal ⇥ 6 times
Session #6 ShortHigh ⇥ 6 times
Session #7 ShortNormal ⇥ 6 times
Session #8 ShortNormal ⇥ 6 times

LongNormal ⇥ 1 time

Table 2. Average ground truth heart rates at the beginning
of ShortNormal and ShortHigh tasks.

Participant ShortNormal ShortHigh
Pf1 69.8 90.6
Pf2 77.4 100.4
Pm1 69.7 67.5
Pm2 65.9 75.1
Pm3 71.0 117.2
Pm4 70.8 120.6
Pm5 66.8 92.0
Pm6 63.0 95.7
Pm7 79.8 99.8
Pm8 66.3 94.6

7 SYSTEM AND USER EVALUATION
To quantitatively evaluate the performance of Auth ’n’ Scan, we conducted cardiovascular data collection with 10
participants. The following experimental protocol was approved by research ethics committee at our university.

7.1 Data Collection Procedure
At the beginning of the data collection, participants were asked to visit our laboratory at the day when they were
available throughout the daytime. After they signed a consent form, we explained the protocol and apparatus to
be used. We instructed the participants to see the experimenter every one hour (except the lunch time), eight
times in total. For instance, if data collection started at 9 am, the eight sessions occurred at 9:00, 10:00, 11:00,
13:00, 14:00, 15:00, 16:00, and 17:00. All participants started the �rst session at least at 10:30 so that we collected
data during the daytime. HRV is known to have some variability throughout the day [45]. Therefore, this session
design is important for us to acquire PPG data at di�erent time of the day.
In each session, participants were asked to perform up to two of the following data collection tasks. During

data collection tasks, the participants were seated. Table 1 illustrates the design of the eight sessions.
ShortNormal Participants unlocked a smartphone equipped with Auth ’n’ Scan with their dominant hand,

and kept holding �ngers for 10 seconds. They also wore CMS-50E on another �nger on the non-dominant
hand. This data was used for evaluating sensing durations for accurate cardiovascular data inference and
reconstructing Poincaré plots. We also recorded if unlock was successful in each trial.

LongNormal Participants attached CMS-50E to a �nger on their dominant hand, and recorded PPG for �ve
minutes. This data was used to create ground truth Poincaré plots.

ShortHigh This is the same task as ShortNormal except that participants engaged in lightweight physical
exercise (e.g., climbing up and down stairs) before data collection. This simulated a situation in which users
have higher heart rates than normal.

We stored all sensor data for later analysis. Before starting the �rst session, the experimenter registered the
�ngerprint of each participant’s index �nger. All sessions were conducted in an o�ce under a normal indoor
light condition.

After completing the last session, they were invited to provide subjective impressions about the Auth ’n’ Scan
system. We �rst let the participants experience the Auth ’n’ Scan system with sensing duration of �ve and ten
seconds. We then conducted a short semi-structured interview to deepen understanding of their Likert scale
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question responses. None of our participants was native in English. We thus conducted interviews in Japanese
and translated quotes to English as faithfully as possible for the report in this paper.

7.2 Participants
We recruited 10 participants (8 male, Pm1–Pm8; 2 female, Pf1 and Pf2; 22.9 years old on average; 7 right-handed)
from our institute for our data collection. None of them claimed to have any known cardiovascular disease, and
regularly engaged in intense physical training. All participants were o�ered approximately 25 USD in a local
currency at the end of the data collection.

8 RESULTS
8.1 CMS-50E heart rate data validation
We obtained 360 and 120 PPG signal data samples in total for the ShortNormal and ShortHigh tasks, respectively.
We �rst created cardiovascular features from the ground truth signals. Although CMS-50E provides its estimated
heart rates, we found that those data exhibited non-negligible �uctuations particularly at the beginning of
measurements. This �uctuation a�ected later heart rate measurements for a relatively long time. Figure 11 shows
one example measurement observed in our experiment. CMS-50E seems to record a heart rate value every second.
However, a log �le produced by its accompanying software does not include timestamps, and we were not able
to quantitatively validate how much the sampling rate was and how consistent it was. As shown in Figure 11,
our informal examination found that 20–40 samples were necessary for stable heart rate measurements (which
roughly corresponds to 20–40 seconds). In our ShortNormal and ShortHigh tasks, the sensing duration was up to
10 seconds to make each session as short as possible. However, this means that heart rate values provided by
CMS-50E may not be stable or accurate in �rst several trials. We thus decided to examine the raw PPG signal
from CMS-50E and extract the heart rate with our algorithm to create ground truth data.

We conducted a comparison to validate whether our algorithm with CMS-50E PPG signal data o�ered accurate
heart rate estimation. In each trial and participant, we had roughly 80 seconds of a PPG signal data from CMS-50E
because she was asked to keep placing a �nger of the non-dominant hand during a session. We assumed that the
participant’s heart rate would not drastically change throughout the session, and thus we used the average of last
20 heart rate samples CMS-50E reports as a reference (HRr ). We then executed our algorithm on PPG signal data
from CMS-50E and estimated heart rates (HRe ) for our comparison against the reference values.
Figure 12 shows the plot of HRr and HRe . We conducted linear regression analysis, and the result yielded to

a line of HRr = 0.987 ⇥ HRe + 2.069 with R2 = 0.92. As the goodness of �t was high, we concluded that our
estimation was su�cient to reliably convert HRe to HRr . In subsequent analysis, we calculated HRr given HRe
extracted from a PPG signal with CMS-50E by using the regression formula above, and regarded it as ground
truth heart rate values. Table 2 shows the average heart rate for each participant at beginning of ShortNormal
and ShortHigh tasks.

8.2 Heart rate estimation
We examined the tradeo� between the sensing duration and accuracy of estimated cardiovascular features. To
this end, we created signals with eight di�erent durations (i.e., T 2 {3, 4, 5, 6, 7, 8, 9, 10}) from original data, and
execute our algorithm. We removed clear outliers where the ground truth signals were not reliable. The outliers
met at least one of the following criteria: 1) the detected heart rate in ground truth data was above 160; 2) the
detected heart rate in ground truth data was 0; and 3) the standard deviation of PPIs in ground truth data was
over 200. As a result, 29 data points (about 6%) were excluded.
We considered �ve di�erent contexts for heart rate estimation: 1) Both ShortNormal and ShortHigh data

(without outliers); 2) ShortNormal data only; 3) ShortHigh data only; and 4) ShortNormal data only with the
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Fig. 11. Typical erroneous heart rate measurements in CMS-50E. Note that the sensor seems to record a heart rate
approximately every second though no quantitative evidence is available. As shown in these two plots, it can take time to
obtain stable heart rate measurements even if a person is si�ing at a desk.

Fig. 12. A plot of the reference and estimated heart rate values using CMS-50E. The reference heart rate was the average of
the last 20 recording of heart rate values directly produced by CMS-50E. The estimated heart rate is a value our algorithm
extracted from the raw CMS-50E PPG signal.

baseline heart rate information for each participant given; and 5) ShortHigh data only with the baseline. The
fourth and �fth conditions are considered as a situation where users would perform baseline measurements
similar before starting to use the system. Because �ngerprint authentication requires registration before its use,
such baseline measurements are plausible. We used the average value of the heart rates detected from the ground
truth ShortNormal data for the baseline heart rate estimation. We assumed that heart rates in ShortNormal should
be within ± 20 from this normal-condition value (e.g., if a participant had an average heart rate of 60 under a
normal condition, estimation below 40 or above 80 would be discarded). After light exercise, heart rates become
faster than in the normal context. We thus performed similar �ltering for the �fth condition by ignoring data
whose estimation was beyond ± 20 from the addition of 20 to normal-condition values.

Table 3 shows the average di�erences between the ground truth and estimated heart rates under the �ve
conditions. As expected, a longer duration resulted in higher estimation accuracy. For example, our estimation
error can be up to 1.7 even without baseline heart rate information under T=10 seconds. However, the standard
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Duration (T ) [sec] Without the baseline heart rate information With the baseline
ShortNormal and ShortHigh ShortNormal ShortHigh ShortNormal ShortHigh

10 1.37 ( 13.3 ) 1.69 ( 13.3 ) 0.42 ( 13.1 ) -0.92 ( 2.93 ) 1.09 ( 7.73 )
9 1.72 ( 14.1 ) 2.30 ( 13.7 ) 0.03 ( 15.0 ) -0.69 ( 3.07 ) -0.87 ( 7.47 )
8 3.66 ( 18.3 ) 4.90 ( 17.2 ) -0.03 ( 20.6 ) -0.39 ( 3.92 ) 1.57 ( 6.59 )
7 6.50 ( 22.5 ) 8.51 ( 23.0 ) 0.56 ( 19.7 ) -0.79 ( 3.90 ) 1.45 ( 7.84 )
6 11.5 ( 25.7 ) 12.5 ( 25.5 ) 8.68 ( 26.0 ) 0.01 ( 5.69 ) 5.75 ( 15.6 )
5 16.1 ( 30.5 ) 17.2 ( 30.5 ) 12.9 ( 30.4 ) 0.44 ( 6.89 ) 5.96 ( 15.3 )
4 30.2 ( 34.2 ) 33.7 ( 34.4 ) 19.9 ( 31.3 ) 1.76 ( 9.81 ) 6.40 ( 16.2 )
3 40.2 ( 35.4 ) 44.8 ( 35.4 ) 26.8 ( 31.6 ) 4.14 ( 7.96 ) 9.55 ( 18.1 )

Table 3. The mean di�erences of the estimated heart rates from the ground truth data. A positive value represents over
estimation. The values in parentheses represent the standard deviations.

deviations were relatively large even under the conditions of T=10. As T got shorter, the estimation became
further less precise. This result indicates that heart rate estimation without baseline information is challenging.
On the other hand, our estimation was accurate with baseline heart rate information. Even in the case of

T=5 seconds, the average di�erence from the ground truth data was under 1 although the standard deviation
was 6.9. In a shorter sensing duration, the average di�erence did not change greatly but the standard deviation
became much larger. The results in the sensing duration of three seconds seemingly showed decent performance.
However, we note that many data samples were �ltered out in this case. Therefore, we concluded that the best T
in our experiment was �ve seconds.

Figure 13 and 14 show a visual comparison of scatter plots between the ground truth and estimated heart rates
for three durations (3, 5, and 10 seconds) with and without baseline heart rate information. This comparison
clearly illustrates the positive e�ect of the baseline heart rate information. As shown in Figure 14, �ltering
successfully maintained many data samples that are highly correlated with the ground truth data. This successful
�ltering resulted in greatly improved accuracy and precision on heart rate estimation.

Our results also revealed that accuracy of heart rate estimation was not largely di�erent between ShortNormal
and ShortHigh under the absence of baseline heart rate information. However, this result di�ered if the baseline
heart rate information was available. The accuracy was improved in both settings, but the standard deviations
were much larger with ShortHigh data than ShortNormal. This suggests that heart rate sensing after light exercise
is challenging though this work shows a potential.

8.3 Poincaré plot feature estimation
We examined how accurately we can obtain features in Poincaré plots by reconstructing them from ShortNormal
data. We �rst investigated how many PPIs can be extracted given T . As a PPI requires two peaks, the necessary
sensing duration would be longer than for heart rate estimation. Table 4 shows the mean number of extracted
PPIs across di�erent T . In the heart rate estimation, T=5 was the best; however, this value would result in a
limited number of PPI data points. To examine the best estimation performance of Poincaré reconstruction, we
decided to set T=10 in this part of our evaluations.
We evaluated di�erences of SD1/SD2 between the ground truth signal and ShortNormal data with T=10.

Figure 15 and 16 illustrate these di�erences across all participants. As HRV data can vary throughout the day,
we compared estimated SD1/SD2 from all ShortNormal data for each participant with her LongNormal data
gathered in the �rst and last sessions separately. These plots suggest that estimation of SD1/SD2 was fairly
accurate for four participants (Pm3, Pm6, Pm7, and Pm8) though not all.
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Fig. 13. A sca�er plot of heart rate estimation from ShortNormal data without the baseline heart rate information. As the
sensing duration becomes shorter, more of erroneous data samples are observed.

Fig. 14. A sca�er plot of heart rate estimation from ShortNormal data with the baseline heart rate information. Compared to
Figure 13, erroneous data samples are successfully removed.

Figure 17 shows the Poincaré plots created with the LongNormal and ShortNormal data for Pm6. In his case, the
two Poincaré plots produced with the two LongNormal data were similar (the left and center plots in Figure 17).
As a result, reconstruction from his ShortNormal data also yielded to a small di�erence in SD1/SD2.

Figure 18 shows the Poincaré plots created with the LongNormal and ShortNormal data for Pm1. His Poincaré
plots produced with the two LongNormal data showed di�erent distributions (the left and center plots in
Figure 18). The plots moved toward the top right as it became later of the day. This tendency was also observed
in the reconstructed Poincaré plot with his ShortNormal data (the right plot in Figure 18). This may be one
reason for inaccurate estimation of SD1/SD2. A future algorithm can be time-sensitive to obtain more accurate
reconstruction (e.g., using only data gathered in a particular time period).

In conclusion, although individual di�erences need to be considered, reconstruction of Poincaré plots from a
set of fragmented data can be possible if a sensing duration was long enough (e.g., 10 seconds).
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Duration (T ) [sec] Mean # of PPI data points
10 135.5 (16.8)
9 100.7 (16.3)
8 70.4 (11.9)
7 45.7 (10.9)
6 26.3 (6.39)
5 11.8 (6.79)
4 1.90 (1.64)
3 0.20 (0.40)

Table 4. The mean PPI data points that were able to be extracted in di�erent sensing duration T . The values in parentheses
represent the standard deviations. In later analysis on Poincaré reconstruction, we used T=10 as it provided a su�icient
number of samples.

Fig. 15. Di�erences of SD1/SD2 in Poincaré plots between
all ShortNormal data and LongNormal of the first session.

Fig. 16. Di�erences of SD1/SD2 in Poincaré plots between
all ShortNormal data and LongNormal of the last session.

8.4 Fingerprint Authentication Success Rate
We also examined how the Auth ’n’ Scan hardware can impact on the performance of unlocking with �ngerprint
authentication. All participants were invited to come back for this part of the study in another day. In each trial,
the participants were asked to unlock the phone with their �ngerprints. Each participant performed 48 trials with
and without the Auth ’n’ Scan hardware. We de�ned a trial in which participants were able to unlock a phone as
a success. Table 5 shows the result of unlock success rates with and without Auth ’n’ Scan. The mean unlock
success rate with Auth ’n’ Scan was the same (96.9%) though the standard deviations were di�erent (2.46 and
4.20 for with and without Auth ’n’ Scan, respectively). We did not observe clear di�erences in the handedness
and gender (right-handed: 96.7% (SD=2.65); left-handed 96.7% (SD=2.41); male: 97.4% (SD=1.85); and female:
94.8% (SD=4.42)). We ran mixed e�ect linear regression against the following factors: Condition (1: with and
0: without Auth ’n’ Scan); Gender (1: male and 0: female); and Handedness (1: right- and 0: left-handed). None
of the coe�cients for the three factors were signi�cant. The estimated coe�cients for Condition, Gender, and
Handedness were 0.00 (SE: 1.58), -0.73 (SE: 2.21), and -0.21 (SE: 1.94), respectively. Overall, the accuracies were
high in both conditions, and we did not see clear degradation on authentication by introducing Auth ’n’ Scan.
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Fig. 17. Poincaré plots for Pm6. Le�: the Poincaré plot with the LongNormal data in the first session. Center: the Poincaré plot
with the LongNormal data in the last session. Right: the Poincaré plot reconstructed with the ShortNormal data (blue: data
in Session #1, #2, #4; red: data in Session #5, #7, #8). In the case of Pm6, variability over time was small, and reconstruction of
a Poincaré plot was relatively successful.

Fig. 18. Poincaré plots for Pm1. Le�: the Poincaré plot with the LongNormal data in the first session. Center: the Poincaré
plot with the LongNormal data in the last session. Right: the Poincaré plot reconstructed with the ShortNormal data (blue:
data in Session #1, #2, #4; red: data in Session #5, #7, #8). The le� and center plots clearly demonstrate variability over time.
This variability was clear in the right figure. Although reconstruction using all ShortNormal data was not very successful,
this plot suggests that a time-sensitive algorithm could produce an improved result.

8.5 Subjective Results
Before the semi-structured interview, we asked each participant to respond to the �ve 7-point Likert scale
questions in Table 6.

8.5.1 Acceptability of Auth ’n’ Scan. As shown in Table 6, our participants expressed their interests in
Auth ’n’ Scan for everyday use. Comments from our participants were in line with this result.

It’s not like I want to know health information by wearing wearable devices, but I would want to record it if
I can by routine interaction [on a smartphone]. [Pf2]
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Participants With Auth ’n’ Scan Without Auth ’n’ Scan
All 96.9% (2.46) 96.9% (4.20)

Right-handed 96.7% (2.65) 97.0% (4.79)
Left-handed 97.2% (2.41) 96.5% (3.18)

Male 97.4% (1.85) 96.1% (4.38)
Female 94.8% (4.42) 100% (0)

Table 5. Mean unlock success rate comparison. The values in parentheses represent the standard deviations.

Question Median Quartile Mode Max Min
As a dual-purpose biometrics system, how much would you like to
use Auth ’n’ Scan in a real life?
(1: do not want to use at all – 7: want to use it every day)

7 6.25 (1st)
7 (3rd) 7 7 5

How acceptable would it be to wait for 5 seconds when you use
�ngerprint authentication?
(1: de�nitely unacceptable – 7: de�nitely acceptable)

5.5 4.25 (1st)
6 (3rd) 6 7 3

How acceptable would it be to wait for 10 seconds when you use
�ngerprint authentication?
(1: de�nitely unacceptable – 7: de�nitely acceptable)

2 2 (1st)
3.75 (3rd) 2 6 1

How acceptable did you think the interference by our hardware
was?
(1: de�nitely unacceptable – 7: de�nitely acceptable)

5.5 4.25 (1st)
6 (3rd) 6 7 3

How acceptable would it be to monitor your cardiovascular
information with Auth ’n’ Scan from the perspective of privacy?
(1: de�nitely unacceptable – 7: de�nitely acceptable)

7 7 (1st)
7 (3rd) 7 7 7

Table 6. �estions and responses about subjective impressions on Auth ’n’ Scan.

They also appreciated the unobtrusiveness of sensing by Auth ’n’ Scan.
I would easily give up if I have to do recording by myself. But a system like this would be easy to use because
it automatically collects information. [Pm1]

8.5.2 Acceptable Sensing Duration. Our system evaluation found that Auth ’n’ Scan would need �ve seconds
for accurate heart rate estimation. The responses from our participants generally showed that this duration was
acceptable. Our qualitative results also corroborated with this result.

I didn’t feel (5 seconds) was not that long. I don’t want to wait when I am in a rush, but I don’t mind either
because it’s just a little long. [Pm3]
Fingerprint authentication does not respond quickly with my �nger anyway. So �ve seconds don’t matter to
me. [Pm2]

However, two of the participants (Pm1 and Pm6) expressed that �ve seconds were slightly unacceptable.
Furthermore, when the sensing duration became ten seconds, our participants mostly agreed that it was not
acceptable. With this duration, they felt that sensing became rather obtrusive. These results suggest that the
sensing duration of �ve seconds is acceptable though a shorter duration would further improve the acceptability
of Auth ’n’ Scan.
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8.5.3 Perceived Interference by Hardware. As shown in Table 6, our participants did not feel that the sensor
board strongly interfered with their �ngerprint authentication. This result also positively supports our concept.
Three of the participants, though, felt a little discomfort due to the thickness of the hardware (2.3 mm thick in the
current prototype). However, as we showed in Section 8.4, the installation of the hardware did not signi�cantly
degrade the authentication performance.

8.5.4 Privacy Concerns. We obtained unanimous strong agreement from the participants that recording
cardiovascular information with the Auth ’n’ Scan does not raise privacy concerns. Representative reasons were:
heart rate information cannot be directly used for identi�cation (3 participants); heart rate information is not
sensitive data (3 participants); and it is acceptable as long as data are securely kept (2 participants). Existing mobile
apps can also collect heart rate information and potentially more intimate physiological data. Our participants
thus did not have strong reluctance for heart rate sensing with Auth ’n’ Scan.

9 DISCUSSION
Our results on the heart rate estimation found that inference was accurate when baseline heart rate information
is available though its precision needs improvements. In particular, a sensing duration of and above �ve seconds
can lead to accurate heart rate estimation. Such baseline measurements are feasible when users are asked to
register their �ngerprints before the use of an authentication feature. Because our hardware performs PPG
sensing from the side of a �nger unlike existing systems, accurate heart rate estimation is challenging. In addition,
we conducted our evaluations under a normal light condition. Our work, thus, still o�ers unique contributions
for heart rate estimation with a limited sensing duration.
Our evaluations also revealed that the sensing duration should be at least �ve seconds with our current

prototype. This is longer than time users would normally spend for unmodi�ed �ngerprint authentication.
However, subjective responses from our participants con�rmed that the sensing duration of �ve seconds was
acceptable. Their quotes suggested that this positive response was mainly because our system does not require
separate explicit measurements of heart rates. Future work should investigate how to improve the acceptability of
the system besides shortening the sensing duration. A future system, for example, could o�er a quick way to opt
in and out opportunistic PPG sensing by pressure-sensitive contacts. When users make a contact with pressure,
the system would not execute sensing and simply unlock a phone. Otherwise, it would perform PPG sensing
for �ve seconds (and even longer if users are willing) and execute phone unlock. We admit that future work
should further investigate how to shorten the sensing duration. But our work demonstrates su�cient feasibility
of opportunistic PPG sensing during �ngerprint authentication.

The results con�rmed that heart rate estimation becomes unreliable without baseline information. Although the
performance degradation was expectable, our results showed its strong e�ect. In particular, standard deviations
of estimated heart rates were large; in most cases without the baseline, they were over ten. Possible factors
may have caused this large variance. In some trials, �nger placement may not have been close enough and PPG
sensing became noisy. We also observed that participants unintentionally performed observable motions, causing
large �uctuations in PPG signals (e.g., adjusting their holding of the device). Such motions occurred regardless of
the presence of the Auth ’n’ Scan hardware, and could have contributed to similar authentication failure rates.
Without the baseline heart rate information, our algorithm cannot remove outliers caused by the factors above.
This led to large performance degradation.

Our results revealed that heart rate estimation often becomes inaccurate after participants took light exercise.
One possible reason for this phenomenon is that jittering of the hand and arm holding the device was observable,
potentially caused by harder respiration. Smartphones can easily distinguish whether a person has engaged
in light exercise with inertial sensors [24]. Thus, a future system can ignore samples after exercise or perform
necessary adjustment on estimated heart rates.
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We also examined the feasibility of reconstructing Poincaré plots from a set of fragmented PPI values extracted
from our sensor data (T=10). The results showed that it can be possible, but future work should examine
improvements which handle variability observed over time. As we brie�y discussed in the result section, a
time-sensitive algorithm may help. A future system could encourage users to unlock a device if enough data
samples are necessary for a short period (e.g., deliberately introducing a noti�cation about minor events when
users may feel boredom [28]). Future systems should investigate how to exploit user’s interruptability for more
frequent data collection as well as improve our algorithm in order to obtain reliable estimation results.
Our quantitative examinations also con�rmed that integration of Auth ’n’ Scan did not degrade �ngerprint

authentication performance. As none of our participants owned the same smartphone used in Auth ’n’ Scan
(i.e., Nexus 5X), they did not have prior experience with its particular �ngerprint sensor. Some participants
also commented that they often could not �nd �nger sensor location precisely because it is on the back of the
device. In our tasks, participants were instructed not to re-adjust their �nger placement even if they failed to
unlock. Thus, our results could be considered as one of the worst performance cases. Nevertheless, the results
showed comparable success unlock rates regardless of the presence of the Auth ’n’ Scan sensor. We concluded
that Auth ’n’ Scan did not greatly diminish authentication accuracy upon phone unlock in our experiment.
Subjective responses from our participants also con�rmed positive aspects of the current Auth ’n’ Scan

prototype. Despite the bulkiness of the prototype, the participants did not feel strong discomfort. As future
systems may employ thinner hardware or more direct integration into a smartphone, physical interference
caused by the hardware could be minimized. The participants unanimously agreed that collecting cardiovascular
information through Auth ’n’ Scan would not create strong privacy concerns. This is an encouraging result for
Auth ’n’ Scan and a larger set of dual-purpose biometrics systems. Although additional user studies would be
necessary to investigate social acceptability and privacy concerns in a realistic setting, this work demonstrates a
potential of the viability of Auth ’n’ Scan.

10 LIMITATIONS
Our results suggest that opportunistic PPG sensing during �ngerprint authentication on a smartphone is feasible.
We now discuss several limitations of this work for clarifying its contributions and possible future research.

We employed a naïve heuristics with baseline heart rate information to remove noisy data. Using built-in
sensors, smartphones can sense activities which lead to di�erent levels of heart rates (e.g., sitting, walking, and
running). However, users may exhibit di�erent frequencies of carrying smartphones [10, 25]. Thus, an assumption
that Auth ’n’ Scan can adjust heart rate inference using built-in sensors may not hold for some users. Future
work should investigate other methods for intelligently calibrating baseline heart rates.

We examined the performance of opportunistic PPG acquisition during �ngerprint authentication on Nexus 5X,
and the results may change with other smartphones. In particular, the �ngerprint sensor in Nexus 5X is on the
backside of the device, designed to be interacted using an index �nger. However, other devices have �ngerprint
sensors on the front side, allowing users to interact with a thumb (e.g., an iPhone). A similar hardware design is
conceptually applicable to other devices, but its performance should be carefully re-examined.

This work demonstrates opportunistic PPG sensing in a smartphone, and our demonstration can be extended
to other �ngerprint authentication scenarios. For instance, a �ngerprint sensor installed into an o�ce door can
perform PPG sensing when an employee is unlocking it. In such a context, more direct integration of PPG sensing
into a �ngerprint sensor is possible. However, regardless of user context and sensor architecture, users would
steadily hold �ngers on top of a sensor. Thus, future work can explore a similar idea to this work in other contexts
and our results would o�er reference performance information.
Our system evaluation did not include patients with heart or cardiovascular disease. Understanding medical

implications of extracted cardiovascular features is beyond the scope of this work. We thus do not claim that
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our sensing technology would o�er professional medical recording. Nevertheless, our results revealed that
cardiovascular features extracted by the Auth ’n’ Scan system can be close to those from the ground truth signals.
In addition, our work has demonstrated a potential to extract longer-term features, such as Poincaré plots, from a
series of fragmented PPG data if a su�cient number of PPIs are available. This work thus still shows a strong
potential of opportunistic PPG sensing during �ngerprint authentication.
Our work did not include a long-term study on user experience of Auth ’n’ Scan. Our results found that the

sensing duration of �ve seconds was acceptable though this is still longer than time for unmodi�ed �ngerprint
authentication. Users might be discouraged to continue to use the Auth ’n’ Scan system due to this sensing
duration in long-term use. Future work should investigate the user adaptation and experience of Auth ’n’ Scan
through deployment user studies. The primary focus of this work primarily lies in the system performance of the
current Auth ’n’ Scan prototype and demonstration of the feasibility of the dual-purpose biometrics concept in
mobile �ngerprint authentication.

11 CONCLUSION AND FUTURE WORK
As the use of biometric authentication is increasing, research can exploit such interaction as a sensing opportunity.
We propose a novel security system concept, called dual-purpose biometrics. Dual-purpose biometrics enables
concurrent physiological or behavioral sensing during biometric authentication or identi�cation. As an instance
of dual-purpose biometrics, we demonstrate Auth ’n’ Scan, enabling opportunistic PPG sensing during �ngerprint
authentication on a smartphone. With our hardware and signal processing algorithm, we achieve heart rate
estimation only for �ve-second sampling if the baseline heart rate of a user is given. Our evaluations also show
that a feature observed in Poincaré plots, which in general require long sampling of PPIs, can be potentially
inferable from a set of fragmented PPG data. Although further improvements on sensing durations and estimation
accuracy would increase the viability of the Auth ’n’ Scan system, our work well demonstrates the feasibility of
concurrent PPG sensing during mobile �ngerprint authentication.
As discussed above, future work should investigate how to improve sensing performance as well as user

experience of Auth ’n’ Scan. Future work should examine how people would use Auth ’n’ Scan in their smartphones
through a deployment study. Extending Auth ’n’ Scan to other �ngerprint authentication scenarios is also an
interesting future research direction. We believe that this work serves as a foundation for exploration of a broader
context of dual-purpose biometrics.
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