
Understanding How and Why Open Source Contributors
Use Diagrams in the Development of Ubuntu
Koji Yatani1, Eunyoung Chung2, Carlos Jensen2, and Khai N. Truong1

 1Department of Computer Science
University of Toronto

Toronto, ON M5S 3G4, Canada
{koji, khai}@dgp.toronto.edu

2School of Electrical Engineering & Computer Science
Oregon State University

Corvalis, OR 97331-5501, USA
{chung, cjensen}@eecs.oregonstate.edu

ABSTRACT
Some of the most interesting differences between Open
Source Software (OSS) development and commercial co-
located software development lie in the communication and
collaboration practices of these two groups of developers.
One interesting practice is that of diagramming. Though
well studied and important in many aspects of co-located
software development (including communication and
collaboration among developers), its role in OSS
development has not been thoroughly studied. In this paper,
we report our investigation on how and why Ubuntu
contributors use diagrams in their work. Our study shows
that diagrams are not actively used in many scenarios where
they commonly would in co-located software development
efforts. We describe differences in the use and practices of
diagramming, their possible reasons, and present design
considerations for potential systems aimed at better
supporting diagram use in OSS development.

Author Keywords
Diagramming, visual representation, software development,
open source software (OSS).

ACM Classification Keywords
H.5.3 [Group and Organization Interfaces] Computer-
supported cooperative work; D.2.10 [Design]
Methodologies, Representation

INTRODUCTION
Open source software (OSS) efforts use an open software
development model where the source code is made freely
available to everyone. OSS itself can often be redistributed
and used anywhere, while commercial software often has
restrictions on its use, modification and/or distribution, and
development occurs within a closed community or
organization. As one of our participants succinctly states

below, open source is a license as well as a philosophy,
something very much on the minds of both developers and
users. This impacts the practices surrounding both the use
of Open Source as well as its development:

Open source is a license. It’s a legal issue if you look
at it that way. It’s a license to apply to the work that is
freely available. If you look at it from a development
process, it’s a philosophy. It’s a different development
method. And the way of communication is something
different. [P2]

Another key feature of many OSS efforts is that they are
often based on volunteerism, and rarely involve any co-
located developers or teams, whereas most traditional
commercial software development efforts involve paid co-
located teams. This difference has forced changes to many
aspects of the development process, most visible in the
ways developers communicate and collaborate. For instance,
OSS developers depend almost exclusively on Internet-
based communication to maintain an awareness of each
other [7]. Though co-located teams use the Internet as well,
it is not their only means of communication and co-
ordination. When moving to a purely or primarily online
organizational structure, many practices need to change.

Cherubini et al. discussed the role of diagrams1 (including
drawings and figures) in the software development practices
of co-located teams [2]. They found that the use of diagrams
played an important role in their participants’ practice; for
example, they were used to understand the code, foster
discussions, design, explain aspects of the software to others,
and support documentation or presentations. Given the
importance and prevalence of diagrams in co-located
software development, it is important to understand how
these practices have been adopted and migrated in OSS
efforts, specifically with respect to:

1 We refer to any kind of visualization containing information as a
diagram. Thus, a diagram may describe code structure, interactions
among modules, the organization of a team, or a development
schedule. A diagram can be drawn using an analog medium (paper
or whiteboard), software (e.g., Visio, Dia, or PowerPoint), through
Unified Markup Language (UML), or even using ASCII characters.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

RQ1. How do OSS developers use diagrams?
RQ2. Why do OSS developers use diagrams?
RQ3. If they do not use diagrams, why?
RQ4. If they do not use diagrams, how do they cope?

To answer these questions, we conducted semi-structured
interviews of active Ubuntu contributors from a variety of
locations, backgrounds, and roles within the project. Our
study reveals conflicting attitudes towards the use of
diagrams. We found that diagrams served a variety of
purposes, as they do in co-located software development,
but that some differed. We also learned that some
participants try to avoid using diagrams and instead develop
practices allowing them to complete their tasks and
communicate with others without the use of diagrams.

The paper is organized as follows. We first review relevant
work, focusing particularly on previous studies on the
software development practices of OSS projects and
distributed collaboration. Next, we describe our
methodological approach. We then discuss the findings
from this study, describing the practices surrounding the
use of diagrams in Ubuntu. We present design
considerations for future systems aiming to better support
diagramming in OSS development.

RELATED WORK

Co-located Collaboration and Software Development
In a study of how Integrated Product Teams physically co-
located work together and their requirements for working
across distances, Poltrock and Engelbeck learned that
scheduled meetings and opportunistic interactions amongst
developers were valuable in facilitating communication,
collaboration, and coordination in team work [11]. Similar
findings were presented by Sawyer et al. in their study of
the effects of a team room (a room to support intense team
work with electrical meeting facility) when they
interviewed and surveyed developers in one software
development laboratory [14]. In addition, they found that a
team room provided a closed environment for the project,
which allowed the developers to concentrate on their work
intensively. Ko et al. explored how and what work-related
information co-located developers acquire [8]. Their
observations of 15 developers at work revealed that
awareness of co-workers was the most frequently sought
information. However, when surveyed, developers reported
that awareness of co-workers was not very important.

Diagrams are important artifacts that have been shown to
facilitate co-located software development. For example,
Dekel studied two co-located software development
scenarios in which participants were given the task of
producing an object-oriented framework for developing
case management applications [4]. They found three major
factors to the success of these co-located meetings:
flexibility of drawing space, team structure, and awareness
of focus. The importance of a flexible drawing space shows
that visual communication plays a critical role during

discussion sessions. Additionally, Cherubini et al.
interviewed nine software developers about how and why
they use drawings [2]. They documented nine distinct uses
for diagrams in software development teams; additionally,
they found that developers themselves would in most cases
quickly generate these diagrams (on paper or whiteboard).

Distributed Collaboration and Software Development
Some important contextual information (e.g., facial
expressions or body language) available in co-located
collaborations is often lost in distributed collaborations. This
loss of context results in different types of issues. Bellotti
and Bly identified four problems in their study of
collaboration practices between geographically distributed
team members of a design consulting firm: Team members
had difficulty locating people, maintaining awareness of the
location and status of other team members, keeping
synchronicity in communication, and coordinating
collaborative activities [1]. These problems led these
designers to prefer co-located collaboration even if it
required some physical effort, such as travel to another site
to meet face-to-face.

Olson and Teasley’s case study of how the use of groupware
in distributed collaboration affected the behaviors of
members of a design team showed that social responsibility
and commitment diminished or disappeared when the team
members did not meet face-to-face [10]. To address
coordination problems in distributed collaboration, Redmiles
et al. advocated a new paradigm for distributed software
development, called Continuous Coordination, where both
formal approaches (e.g., workflow management systems)
and informal approaches (e.g., emails and instant
messaging) are used to provide scalability and flexibility in
coordinating within a project [12].

OSS developers are often geographically distributed.
Because they face the challenges described above, many
have developed their own practices to cope with these
problems. Gutwin et al.’s examination of group awareness
within OSS projects revealed that text-based
communication, such as mailing lists and chat systems,
contains valuable information for maintaining group
awareness [7]. Robertsa et al.’s examination of email
communication in the Apache project found that core
developers tend to form sub-groups and communicate
intensively within these rather with the whole [13]. Elliot et
al. discovered that summaries of mailing lists and Internet
Relay Chat (IRC) logs supports lightweight coordination
and awareness within distributed projects [5].

Although diagrams play an important role in software
development, including facilitating communication and
collaboration among co-located developers, their
significance and use in OSS projects have not been well
explored. Twidale and Nichols reported use of screenshots
and ASCII art in the bug reporting process [15].

METHOD
To examine how and why diagrams are used in any and all
aspects of the software development process of an OSS
project, we performed a series of semi-structured interviews
with contributors to one particular effort—Ubuntu. In this
section, we first discuss why we chose Ubuntu. Next, we
discuss our participant recruitment method and describe
those who took part in our study. Finally, we describe how
the semi-structure interviews were conducted.

The Ubuntu Project
Because of the potential cultural differences across OSS
efforts, we opted to focus on one large and diverse project.
Ubuntu is a Linux distribution with a regular release
schedule and active developer base. The project has two
types of core contributors; members and developers.
Members are those who have made any type of significant
contribution to Ubuntu (including non-programming
chores). Developers are members who have successfully
contributed code to Ubuntu. There were about 430 active
members and 110 developers as of September 2008 [20].

Ubuntu has a collection of teams that either develop
software or organize efforts. As of September 2008, there
were over 30 project-based development teams that focused
on specific functions or applications in Ubuntu and about
180 local communities that supported localization.
Additionally, there were two groups overseeing the overall
project: The Technical Board was responsible for all
technical decisions, such as the package policy, release
feature goals, and package selection for new releases. The
Community Council managed the social aspects of the
project, including: Code of Conduct; team creation and
appointment of team leaders; and the creation of new
organizational structures and processes.

Participants
We recruited participants through four Ubuntu mailing lists.
Participation was open to anyone currently working on
Ubuntu or related projects in regular communication with
other contributors. We used these criteria to obtain a sample
of individuals who filled various roles in the community as
well as people from as many parts of the world as possible.
In total, we recruited nine participants from a diverse set of

roles (see Table 1). All participants were male, ranging in
age from late-teens through late-50s, representing Europe
and North America. They had on average of two and half
years of experience working with Ubuntu. We compensated
participants with $30 USD (or 20 Euros).

Procedure
Our study was divided into two phases. First, we asked
participants to complete a questionnaire and provide us with
information and materials for discussion. The questionnaire
featured questions about participants’ OSS experience,
project participation, their roles in each project, and basic
demographics. We also asked participants to share diagrams
they had created, modified or used as part of their work on
Ubuntu. In the second phase of the study, we conducted
semi-structured interviews with participants. We used the
materials provided by the participants to ground the
discussion about their communication with others in the
Ubuntu project and their diagram use in the project.
Participants were asked to refer back to the diagrams they
had provided, as well as any others they might have used or
seen in the past. Though some participants were not native
English speakers, all interviews were conducted in English.
The interviews took between 40 and 60 minutes. All
interviews were recorded and transcribed with consent.

To gather a breadth of perspectives, we continued to
interview participants until the interview data converged.
Although the small sample size used in our study is a
potential concern, our data saturation rate is in line with
what has been shown experimentally to be achievable for
broader research [6]. Because the scope of our study is
narrow, we achieved data saturation with few participants.

From the interview transcripts, we extracted approximately
200 excerpts for in-depth analysis. Two researchers
conducted open-ended inductive coding on the quotes to
identify nine themes pertaining to how OSS contributors
communicate and use diagrams (see Table 2). The coding
scheme was discussed amongst the research team and
refined. A third researcher then performed the coding again
for inter-rater reliability [3, 9]. Throughout this paper, we
preserve and present subjects own (sometimes original) use

Participant Country Roles

P1 USA Translation, community building, patches

P2 Netherland Marketing

P3 France Code development, community building

P4 USA Team planning, testing, community building

P5 Germany Package maintenance

P6 Hungary Translations, backporting, bug reporting

P7 USA Release manager, bug reporting

P8 Canada Package maintenance

P9 Canada Project leader, Package maintenance

Table 1. Interview participants.

Theme
Observed
Agreement

Cohen’s
Kappa

Communication conventions 0.97 0.88

Reasons/Purposes for offline meetings 0.99 0.91

Sharing offline meetings 0.99 0.85

Reasons/Purposes for diagrams 0.96 0.88

Creating Diagrams 0.94 0.71

Updating Diagrams 0.98 0.81

Comparing Diagrams 0.99 0.85

Sharing Diagrams 0.97 0.68

Lack of Diagrams 0.96 0.88

Table 2. Themes identified in the study.

of language and grammar as faithfully as possible, omitting
the traditional [sic].

Given the qualitative nature of the interviews and the
modest size of the participant pool, when numbers are
presented, it is to give the reader an idea of the prevalence
of certain behaviors across our sample. These numbers are
not intended as statistical evidence of frequency and their
described practices cannot be assumed to generalize across
OSS efforts. However, the actions of our participants
illustrate interesting behaviors which merit further research.

RESULTS

Project Communication and Coordination
Because Ubuntu contributors regularly communicate online
they have developed conventions to make communication
more effective. All participants agreed that their main
communication channels are email and IRC, and that
communication is predominantly text-based, in line with the
findings of Gutwin et al. [7].

Main source of communication is probably email with
mailing lists. Other big source of communication is
IRC… Especially, in Ubuntu, we have a very large,
very comprehensive wiki, wiki.ubuntu.com. [P5]

As seen in the comment of P5, Ubuntu contributors
communicate over the website (e.g., a wiki or a blog) as
well. Launchpad [19] is an important web-based medium
used by this project to share ideas about the project, bug-
reports and information about the projects’ members. It is
also used for creating diagrams (discussed later).

P2 explained the different purposes to which IRC channels
and mailing lists are put, also in line with [7].

Most of the time, online IRC conversation is an
unofficial platform for communication because it’s
fairly hard to share the situation and conversation
over IRC… Mailing lists, the platform to discuss and
announce real problems and issues and solutions. In
some problems, the IRC channel is not used because it
takes too much time to read and respond to questions.
We are just using mailing lists because it’s far easier
to keep track of the messages and we can filter out all
other stuff. [P2]

In addition to regular online communication, the project has
regular bi-annual meetings, called Ubuntu Developer
Summits, attended by many. There discussions center on
process and project management, the next version of
Ubuntu, and brainstorming new features.

Mainly technical issues like what new software we
want to enable, how to improve process, how we
develop, also how we communicate, how we handle
bugs, mainly what features we want to implement in
the next or subsequent release. [P5]

The most important discussion that sometimes happens
there is to brainstorm. That’s always something good.

Most of the time, you see, if it is a new concept or a
new idea, it can be sent to that kind of meetings. And
then we “shoot out”. Everyone asks questions about
these things. And that’s how ideas are evolved. [P2]

P2 also mentioned the importance of its social aspects of
offline meetings.

Most of the time, real-life meetings are real social
events and make it easier to collaborate with other
developers. Because you know them in person, you can
know what they look like, or that kind of stuff. [P2]

Although most of the participants agreed that an offline
meeting facilitates informal discussions and strengthens
social ties, they recognized the inherent logistic difficulties.

This year it was in Venezuela, but I didn’t attend there
because it was too far and too expensive for me to go
there. [P5]

But since we are located all over the world even for
the French community, it’s quite hard. We tried to
have… Let’s say, we can meet most of them, but for
instance, one of us is living in New York in the French
community. One of my friends is living in New York.
And he is not with us. So, it’s not easy. [P3]

Because only a limited number of contributors can attend
an offline meeting, putting materials created or used at
these events online is important. Participants take notes
with a collaborative text editor (Gobby [18]), and use wiki
markups to reduce publication effort.

We usually have, in each group of the sessions,
someone who writes specifications, who writes down
the results… And document is in the Ubuntu wiki and
links from Launchpad or some other web servers,
where can track the dependencies or the needs or that
kind of stuff… We usually use the wiki markup
language in the gobby document, so we can just copy
and paste it to the wiki. [P5]

Videos are also used to archive and share the meetings with
their worldwide developer base.

So, all the sessions, I think, nearly all of the sessions,
are recorded, and broadcasted by the Internet. So,
there are public archives, so you can see them later
on. [P5]

The Role of Diagrams
Cherubini et al. identified nine uses of diagrams in co-
located software development [2]: understanding existing
code, ad-hoc meeting, designing/refactoring, design review,
onboarding, explaining to secondary stakeholders,
explaining to customers, hallway art, and documentation.
Interestingly, only a subset of these purposes were observed
in our study. In this section, we discuss how the reported
uses of diagrams in co-located efforts manifest themselves
in Ubuntu as described by participants in interviews.

Understanding Structures
In contrast to the observations of Cherubini et al., our
participants infrequently used diagrams for understanding
existing code (we will discuss how they cope without
diagrams later). We did, however, find evidence of diagram
use for visualization of system structures in a similar way to
what Cherubini described as understanding existing code.

We use diagrams to communicate the infrastructure
that we have for the server… Because we have a lot of
servers like system servers, we needed to work to have
one clear view of them. They have various names… To
have a better view of the scheme. Because it was
[explained by] some quite long paragraphs and I
really think that diagrams could be much easier to
understand. And I would say, it’s a real image of my
proposal. That’s why I did some drawings for that.
[P3]

P8 commented that he used handwriting sketches when he
needs to understand very difficult problems or algorithms.
These sketches however tend not to be shared or maintained.

Generally I do not draw anything. Only time I do that
is for algorithm or like something very difficult and
complex to draw picture of mine. [P8]

Ad-hoc meeting
Contributors have frequent informal discussions over email
or IRC, in which diagrams can help them explain their ideas
or opinions to others. P5 created two different diagrams
(one of them is Figure 1 (a)) to convey his idea of package
maintenance to other developers.

At the time when I created this diagram, I noticed a lot
of discussions in various mailing lists. They argued
about how was the better approach, what was the best
tool, what was the best workflow. … I created the wiki
page to explain my view on that matter so that in the
discussion, I can point people to… “Well, I think this
is the best one. This is the best approach. Look at this
page.” [P5]

Designing/Refactoring
P7 shared his experience with freehand sketching to design
a user interface for his project. Although he found freehand

sketching easy, he found making modifications hard, and
did not reuse the sketches.

I made hand sketch on a piece of a paper with pencils.
It was interesting. It required me to do a lot of erasing,
which is not really fun. I did not get whole codes when
I was doing that. It probably was not the best work… I
mean, doing a piece of paper, while it could work, I
think, I think it's just so counterproductive just because
if you have to make one change, you basically change,
could change the whole thing I don't even know. You
start to put it together, and oh, it's not wide enough.
That's screwed up everything. [P7]

Design review
Design reviews happen through feedback from other
community members. However, reviews are primarily done
via text rather than using diagrams. P7 expressed concerns
with using diagrams in design reviews.

I got a lot of feedbacks from the community once I
actually release it on subversion. If testers give
feedback, I find [it’s] something that I have not
thought of. If we use more diagrams, then testers want
to give more feedbacks on them. Then, the problem on
the development cycle would be caused. If there is
feedback too late, it would make repositories delayed.
[P7]

As Cherubini et al. point out; diagrams are sometimes used
to reverse-engineer ideas. P8 had an experience where his
project needed to reverse-engineer a USB module.

We had reverse-engineering. I did not know that how
reverse engineering worked but they did. [The] USB
diagram was very complex. So, we had huge
information in written form. We absolutely had
diagrams that the USB interface was not drawn
manually but they used tools to generate that from
data set somehow. [P8]

Onboarding
OSS projects are largely volunteer-based, and must often
deal with high turnover among contributors. Making
information necessary for joining available to potential
contributors is essential to ensuring the long-term survival

Figure 1. Diagrams created by the participants (some masked for anonymity): (a) flow chart created by P5 with Dia; (b)
dependency tree automatically created by launchpad based on the declaration made by P4; and (c) ACSII art created by P2.

of projects. Two participants gave us examples where
diagrams were created primarily to help new developers
join their teams.

But it’s fairly important to create diagrams in a
project so that new incoming developers have a lower-
level barrier to contribute to the project because it’s
easy to understand how the code works [with
diagrams]. So, I like high-level documentation and
high-level diagramming. [P2]

Now in the architecture, we have some figures and
something like that. And it was quite needed because
otherwise when new comers came to this list, they
were completely lost. [P3]

Explaining to users and secondary stakeholders
Our participants did not mention the use of diagrams to
explain software to users and secondary stakeholders.
However, the Ubuntu project uses a project management
service (Launchpad) with a feature called Blueprints. This
tool allows Ubuntu contributors to post feature requests,
have discussions, and post specification changes.
Launchpad also automatically creates diagrams composed
of different colored circles and lines, such as dependency
trees. Thus, these diagrams can and likely are used to
communicate with secondary stakeholders in this
community.

Hallway Art
As Cherubini et al. point out; some diagrams are used for
sharing overall system or project status awareness. We
found one instance of diagram use for this purpose.

We have some, I would say, some dedicated diagrams
for roadmap for various things we have… In the
French community, we have a website, and we have a
forum, and we have a wiki and something like that. So,
in each, we talk and we organize some of them and we
have a roadmap for each of that. [P4]

Documentation
Because code can be shared and modified by any developer,
documentation is often used to assist developers in
understanding code structure quickly and accurately. Figure
1 (c) is an example diagram created by P2 for the
documentation of his project.

I found a document about some changes on package
managers for debian. And I think it was a few months
ago. And I created a very basic ASCII art, maybe a
few weeks ago, to define some projects for
documentation of the architecture in the OpenARM
project. [P2]

P2 expressed an interesting perspective on documentation.
He felt that a diagram created in the design stage should
remain as a part of the project documentation. This means
that diagrams may serve different roles over their lifetime.

Creating the design of something is also
documentation. Before you start developing, you
create the design, and the documentation of your final
project. So that’s also where you create diagrams. So,
before I start typing codes, I also write diagrams. [P2]

However, P2 also recognized that reuse of documents
across purposes and audiences is difficult. He described a
case where he needed to create a more sophisticated version
of a low-fidelity diagram used within the team.

ASCII arts are often used for internal documentation
in the project. It actually works. But website, which is
used for marketing, for attracting new people and all
kinds of stuff. …, you have to talk to the audience. [P2]

Practices and Challenges around Diagram Use

Creating Diagrams
As seen in Figure 1, participants used different tools and
techniques to create diagrams. Only two participants (P7
and P8) told us they used freehand sketches, though
infrequently, a departure from the findings of [2]. Another
two of our participants (P3 and P5) used Dia [16], an open-
source drawing tool for software development. Figure 1 (a)
is a diagram created by P5 with Dia. P3 explained that he
recommended Dia to other developers in his project.

Honestly, two of the guys do diagrams and they also
use the same tool I did. Because they asked me how I
made them (diagrams created by P3), I told them, and
they said, “that’s great for me.” So they are using it.
[P3]

Launchpad automatically creates diagrams showing
dependencies on other projects or components based on
declared specifications. Figure 1 (b) shows the dependency
tree created by Launchpad based on declarations by P4.

That was generated automatically. I just told the
system which project is dependent on [my system] and
what is dependent on [my system]... Based on the
dependency that I declared. [P4]

Our interviews discovered that ASCII art was frequently
used for simple diagrams or for internal use. Figure 1 (c) is
an ASCII diagram created by P2.

I do not use a tool I think is overkilled. Everybody can
change ASCII arts. Everybody can delete ASCII arts.
Sometimes, it’s not official or appealing… Most of the
time in the development, especially source code
development and documentation and how the internal
structure code works, you use ASCII arts. [P2]

Screenshots were also mentioned as a way to diagram.
Although none of the participants had taken screenshots of
their projects, P7 told us that contributors working on UI
themes shared screenshots within his development project.

They come up with design themes. They have done
more the main screen shots and ideas and present
them in meetings. [P7]

There are different OSS tools to create diagrams. However,
this flexibility can also pose a problem, as P4 explained.

You know, I mean, it’s very easy to waste time for
making it look pretty that could’ve gone into just
talking about what we want to do or waste time for
arguing what format to use or what tool to use. [P4]

P5, who often creates diagrams with Dia, told us that inter-
operability of an image format constrains him to Dia.

What has been most annoying is the inter-operability
between different programs. I mainly choose to use
Dia because I can export it to SVG very easily and
import it to Inkscape. With Inkscape, I can do
modifications I cannot do with Dia… I have to choose
Dia not because it is the best tool but because what I
can get out of it, export functions… in that way, I can
import it into other programs. [P5]

Sharing Diagrams
Our interviews revealed that sharing diagrams was usually
done over the Internet, (e.g., a post to a website, or upload
to a version control system).

I just created it in PNG and attached it to the wiki.
That’s publishing. [P5]

We put them on the website... You can take it from
sourceforge and open it. We export the stuff and put it
on the website. [P3]

P2 explained that uploading diagrams to a version control
system made it easier to share them with others.

We put [diagrams] on the subversion system. That’s
the ideal way… We are really in the best practice. The
best way is to put it on subversion. Everybody can
keep the track of the changes on the documentations,
the website, the presentations and all kinds of stuff.
And it’s centralized and everybody can access. [P2]

Most OSS project mailing lists prohibit or frown upon
attaching diagrams in postings. P2 described how sharing
diagrams is done within community conventions.

And also I sent it via IRC… It’s a convention… You
don’t hook up the complete message you receive. So,
by using an external website, for pasting text and
images and that website creates a link. And that link,
you can send it to the IRC website. Then you can
explain what kind of information can be found at that
link. So, all other people follow the text and the
conversation can keep going on in the IRC channels.
[P2]

Updating Diagrams
As we describe in The Role of Diagrams section, diagrams
are often generated on the fly and shared for discussion.
These same diagrams, therefore, do not necessarily lend
themselves well for official documentation, where updates
are necessary as the documented system is modified. Some
participants did not consider this a significant problem.

If I would have to update the diagram or create a
similar one, I would attach the source to the diagram
in the wiki. So, I don’t expect any problem on updating
the diagram. [P5]

Some diagrams were automatically updated; for example,
diagrams in Launchpad were updated automatically when a
project dependency changed.

Well, it’s automatically updated whenever anyone
changes the dependency of any of the stacks that are
described there. So, any stack can depend on any other
stack, and it automatically draws the tree, the diagram
by tracing those dependencies. [P4]

Updating diagrams seems to be a relatively rare practice
according to our interviews, and sometimes undesired. For
instance, P5 told us that when he creates a diagram, he does
not expect that he or others will ever update it. These
diagrams are part of the conversational record and therefore
should remain static.

This specific diagram has not been updated. To be
honest, I don’t intend to update this diagram because
at the time when I created the diagram, it was the
same time as I created this blog post, a complete wiki
page. And this helped the discussion with some friends
of mine. [P5]

If diagrams are used as a part of the system documentation,
they need to be updated. However, we did not find an
example of regularly updated diagrams for documentation
except those made by automatic diagram generation tools.

Two participants discussed potential problems updating
diagrams, particularly in a collaborative manner.

What would be problematic is that someone else would
take the source, and would modify on the earlier
version of mine. You would have a problem if two
separate edits on the same file and then you want to
merge these two diagrams... Merging changes in a
diagram would be exceptionally hard. [P5]

P5 also pointed out that this issue has been resolved for text
files, including source files. However, the same solutions
have not been successfully applied to diagrams.

We have experience with handling diversions of all
packages and software, and we have a pretty clever
solution of how to merge or how to handle the
diversions. However, they don’t really apply it to the
diagrams or pictures but rather to… how to say… to
plain text, to plain ASCII text in the source code. [P5]

P3 allowed others to update diagrams, but recognized that
this could become a problem as the size of his team grows.

No. I don’t mind in that case because there are a few
people within that [team]. But if we had a huge
number [of people] or it was open [to public], it
(version control) would be definitely needed. [P3]

Another related issue is establishing standards and norms
for diagrams within a team. P4 explained that the wide
variety of diagram tools and individual contributor’s
preferences made it difficult to reach consensus.

There’s also how to edit, you know. Different people
use different tools to create diagrams. And you wanna
be able to communicate to everyone no matter how
they are interacting with you. Anyone would be able to
modify it. And it’s kind of hard to agree on what tools
to use. There are many many different tools that
people use for diagrams and many different formats
which you can use for diagrams… That’s because it’s
a real hassle to deal with a mass of different programs
and formats and most are proprietary. [P4]

Updating diagrams also presents significant challenges for
OSS communities, where the project history may not be
captured as well or thoroughly as in co-located teams, or
where there may be more turnover. Determining which
diagrams are current and which are outdated is often
difficult. As P4 points out, comparing two versions of a
diagram can be challenging, at least compared to text files,
for which tools exist.

Well, it’s harder to compare two diagrams. You know,
if I want to have difference on what you said versus
what he said… When you use that program, the main
goal of the diagram they fight is to try to compare two
the totally different [diagrams]. [P4]

Surviving Without Diagrams
Although participants agreed that diagrams were useful in
general, they were not willing to or did not feel the need to
use them in all cases, or anywhere near as frequent as seen
by Cherubini et al. [2]. P3 discussed his reason for not
using diagrams in his debugging tasks, claiming that
sufficient information existed in other forms and sources.

There is not really a need for visual communication.
Most of the information is located in bug reports or
something like that. It’s enough. There is no need for
visual one in that case. [P3]

Large tasks in OSS projects such as Ubuntu are usually
divided into small tasks. In other words, a strict modularity
strategy is adopted to limit the potential interactions any
developer needs to consider with other modules.

It might be the case for people who work on a more
complicated program to share diagrams that are
standard for those programs. But that’s not something
that I do. [P4]

P4, who was generally passive about using diagrams,
explained his strategy for dealing with and figuring out
existing code without diagrams.

Some systems that we tried out to explain code to
somebody using pictures, you know, this function calls
that function. Sometimes, that kind of things is useful
but not nearly as often we think. What people tend to
do is to share the code itself and then everyone can use
their own favorite editors or integrated development
environments, interactively move between, you know,
who calls this, or who calls that. That interactivity may
replace the desire for some static pictures… I use
Emacs to edit the code or look at the code. Defined
within the Emacs to… dependency things. Tools that
are programmed with Python with things like IPython
to inquire or find out what functions I have or what the
arguments are. [P4]

DISCUSSION

How Ubuntu Developers Use Diagrams
As discussed earlier, participants were more likely to use
software, web-based systems, ASCII art, and screenshots to
create diagrams than a piece of a paper. Thus, diagrams for
Ubuntu are more likely to be digital than analog. This is
different from what Cherubini et al. observed in the
practices of co-located teams, driven of course by the need
to share ideas with a large online developer community.

This is a drawing tool that allows me to do open
source collaboratively. It must be shared. It has to be
shared. [P1]

This naturally leads to changes in the cost and appeal of
diagramming, and how diagrams are used.

Why Ubuntu Developers Use Diagrams
Our study showed that five of the identified purposes of
diagrams described by Cherubini et al. [2] were common
online (ad-hoc meeting, designing/refactoring, onboarding,
hallway art, and documentation) and two additional
purposes existed partially (understanding structures, and
design review). However, we could not find clear evidence
for two other purposes (explaining to secondary
stakeholders, and explaining to users).

Although we found evidence of diagram use for
understanding the structure of a system or algorithm,
participants did not report a case where they used diagrams
to understand existing code. One possible reason is that
participants have already established their own practices for
examining code. This circumvents the perceived high cost
of standardizing methods and conventions for creating and
editing diagrams.

Likewise, we found partial evidence of the use of diagrams
for design review. Beyond a reported instance of a design
diagram that was reverse-engineered, no participant worked
on system or user interface design, which may be one
reason we could not find stronger evidence. Another reason

may be that design review usually involves updating
diagrams, which most of our participants tried to avoid.
After a disappointing experience with a paper sketch, P7
has developed a practice of sharing his ideas for user
interfaces without using diagrams. He uses Glade [17], a
user interface designer tool for GTK+ and GNOME. He
makes a draft user interface in it, shares the source code,
and lets other contributors revise it. The source code is an
extended markup language (XML) file, which makes the
sharing and updating process easier than with an image file.

If they can download source codes and look at it and
look at the UI, then they can make tweak themselves.
Instead of making suggestions and sending those
suggestions in text which what they are doing if I have
given them screen shots, whereas if I give them source,
they can give suggestions and they can make changes
themselves. [P7]

Explaining to secondary stakeholders was another purpose
absent from our study. One possible explanation for this is
the strict modularity of the project. In general, a project is
divided into many small parts, and they are usually well
segmented. Each component is developed or maintained by
a small group of developers or a single person. Every
developer can assume that all those involved understand
how the components interact with each other (i.e., what the
input is, or what format the output has). Therefore, there is
less need for explaining the details of each component.

Similarly, though no clear case of diagram use to explain to
customers was seen in our study, it might be a prevalent
practice among contributors working in marketing or user
support. For example, P2, who works for marketing,
identified a gap in the level of investment in diagrams
intended for internal vs. external use and publication. This
points to the fact that developers are divorced from the task
of communicating directly with end-users. This could of
course lead to situations where the user documentation
becomes out of synch with the reality of the software’s
inner workings.

Why Ubuntu Developers Don’t Use Diagrams
We found conflicting attitudes towards the use and
usefulness of diagrams in our study. On one hand,
participants who actively used diagrams saw their value:

I’m a strong believer in creating good documentation
with diagrams. One thing you always have to
remember is that creating a model or a diagram of
something, it’s simplified [and] better. [P2]

However, participants who were ambivalent towards
diagrams often felt that text communication was sufficient.

What I am saying is that it’s not that important to me. I
don’t see people saying, “Oh, boy, I really… this is... I
just saw a diagram. Have you seen it right now?”
People just use text to describe stuff they are working
on. [P4]

This is clearly different from the findings by Cherubini et al.
[2], where co-located software developers generally agreed
on the importance of diagrams and used them actively.

The Ubuntu Project vs. OSS in General
The findings presented in this paper are based on interviews
with nine Ubuntu contributors, and may not carry over to
other OSS projects. OSS projects span a wide range of
organizational models, team sizes, and application areas,
which makes it difficult to generalize.

The Ubuntu project is among a small minority of large
(both in terms of code and contributor base), mature, and
centrally managed OSS projects. Smaller OSS teams may
feel less need for diagramming for instance. Our findings
point to important differences in the practice of
diagramming in a large distributed OSS project from that
observed in co-located software teams, something which
warrants further study, study which should explore the
generalizability of our observations across OSS projects.

FUTURE DESIGN CONSIDERATIONS

Sharing the “Source Code” of Diagrams
One reason some participants gave for not using diagrams
more frequently was that merging different versions of a
collaboratively edited diagram is difficult due to the lack of
appropriate tools. These problems made some participants
turn to ASCII art, which though limiting and cumbersome,
can be edited by anyone and handled by current version
control systems. One potential solution could be to share
the “source code” for a diagram, textual codes which define
a diagram, such as the XML of Glade, rather than binary
files. This would allow existing version control systems to
track changes. However, any tool to create a diagram from
the source code must be widely available, which might
impose other problems; contributors may have different
preferences for tools and conventions.

Even if diagrams are distributed as editable and track-able
text representations as described above, and important
hurdle remains in developing the tools that would merge
and represent change in a visually obvious, but non-jarring
way. Merging two diagrams with slight non-overlapping
edits should not result in a complete re-distribution of the
elements in the diagram unless strictly necessary..

Coexistence with Established Communication Channels
For OSS, diagrams need to be shared online. However,
because the main communication channels used; emails and
IRC, primarily focus on text, diagrams currently have to be
uploaded to websites and their locations shared through
those channels. Although it might be necessary to re-
examine these conventions, it is important to avoid
unnecessary disruption to these communities. Therefore, the
process of sharing diagrams might have to continue along a
parallel backchannel (for instance, a predetermined
website). Establishing standards and managing expectations
(such as promoting the use of a fixed site with known set of

features for the exchange of diagrams) could improve the
situation.

Other Requirements
We discovered several other requirements for diagram tools
in this domain. First, the tools themselves need to be free
and OSS. The method for creating and editing diagrams
must be accepted by a majority of OSS developers. Free
software usually means no out-of-pocket cost for OSS
developers, and would offer greater licensing compatibility
than a proprietary product. There is also a high acceptance
barrier that must be overcome, made lower if the tool itself
is open source.

Many OSS projects are globally distributed. Thanks to
advances in communication technology, many OSS
developers have broadband Internet connections. However,
there are still developers who have limited connectivity.
Therefore, tools to support the collaborative generation and
sharing of diagrams should not assume a pervasive
broadband connection.

CONCUSIONS AND FUTURE WORK
Diagramming is a proven and valuable tool in software
development. We interviewed nine Ubuntu contributors to
understand how and why they used diagrams. We show that
they had conflicting attitudes towards diagramming, and
that even those who use diagrams in their work do not use
them consistently, or for all of the purposes seen with co-
located teams. We also explored how developers have
adapted to working without diagrams, and discussed the
reasons why diagrams were not actively used in some cases.

This study shows that the use and practices of diagramming
is influential in OSS development, but that its use is far
from simple at times. Further research is needed to develop
a more comprehensive understanding of OSS diagram use.
Deploying and testing a system designed based on our
findings is another interesting research direction.

ACKNOWLEDGEMENTS
We would like to thank Gary Bader, Rhys Causey, and
Jeremy Handcock for participating in our pilot interview.
We also thank Steve Easterbrook and Jorge Aranda for
helpful comments on this project, and David Dearman and
Justin Ho for help on our paper. We thank all the
participants in our study for their help and cooperation, and
the greater Ubuntu community for making their materials
and practices public for study.

REFERENCES
1. Bellotti, V., and Bly, S. Walking away from the desktop

computer: distributed collaboration and mobility in a
product design team. In Proc. CSCW 1996 ACM Press
(1996), 209-218.

2. Cherubini, M., Venolia, G., DeLine, Rob, and Ko, A. J.
Let's go to the whiteboard: How and why software

developers use drawings. In Proc. of CHI 2007, ACM
Press (2007), 557-566.

3. Cohen, J. A. Coefficient of agreement for nominal
scales. Educational and psychological measurement 20,
(1960), 37-48.

4. Dekel, U. Supporting distributed software design
meetings: What can we learn from co-located meetings?
In Proc. of HSSE 2005, ACM Press (2005), 1-7.

5. Elliot, M., Ackerman, M. S., and Scacchi W.
Knowledge work artifacts: kernel cousins for free/open
source software development. In Proc. of GROUP 2007,
ACM Press (2007), 177-186.

6. Guest, G., Bunce, A., and Johnson, L. How many
interviews are enough?: an experiment with data saturation
and variability. Field Methods 18, 1, (2006), 59-82.

7. Gutwin C., Penner, R., and Schneider, K. Group
awareness in distributed software development. In Proc.
of CSCW 2004, ACM Press (2004), 72-81.

8. Ko, A., DeLine, R., and Venola, G. Information needs in
collocated software development teams. In Proc. of
ICSE 2006, ACM Press (2006), 344-353.

9. Landis, J.R., and Koch, G.G. The measurement of
observer agreements for categorical data. Biometrics 33,
1, (1977), 159-174.

10. Olson, J. S., and Teasley, S. Groupware in the wild:
Lessons learned from a year of virtual collocation. In
Proc. of CSCW 1996, ACM Press (1996), 419-427.

11. Poltrock S. E., and Engelbeck, G. Requirements for a
virtual collocation environment. Information and
Software Technology 41, 6, (1999), 331-339.

12. Redmiles, D., Hoek, A. V. D., Al-Ani, B., Hildenbrand,
T., Quirk, S., Sarma, A., Filho, R. S. S., Souza, C. D., and
Trainer, E. Continuous coordination: a new paradigm to
support globally distributed software development
projects. Wirtschaftsinformatik 49, (2007), 28-38.

13. Robertsa, J., Hann, I.-H., and Slaughter, S.
Communication networks in an open source software
project. In Proc. of OSS 2006, Springer Press (2006),
297-306.

14. Sawyer S., Farber, J., and Spillers, R. Supporting the
social processes of software development teams.
Information Technology and People 10, 7, (1997), 46-62.

15. Twidale, M. B., and Nichols, D. M. Exploring usability
discussions in open source development. In Proc. of
HICSS 2005, IEEE Computer Society Press (2005),
198.3.

16. Dia, http://live.gnome.org/Dia/
17. Glade, http://glade.gnome.org/
18. Gobby, http://gobby.0x539.de/
19. Launchpad for Ubuntu, https://launchpad.net/ubuntu/
20. Wiki for Ubuntu, https://wiki.ubuntu.com/

