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Al-light: An Alcohol-Sensing Smart Ice Cube

HIDENORI MATSUI, TAKAHIRO HASHIZUME, and KOJI YATANI,The University of Tokyo, Japan

Inappropriate alcohol drinking may cause health and social problems. Although controlling the intake of alcohol is effective
to solve the problem, it is laborious to track consumption manually. A system that automatically records the amount of
alcohol consumption has a potential to improve behavior in drinking activities. Existing devices and systems support drinking
activity detection and liquid intake estimation, but our target scenario requires the capability of determining the alcohol
concentration of a beverage. We present Al-light, a smart ice cube to detect the alcohol concentration level of a beverage
using an optical method. Al-light is the size of 31.9 x 38.6 x 52.6 mm and users can simply put it into a beverage for estimation.
It embeds near infrared (1450 nm) and visible LEDs, and measures the magnitude of light absorption. Our device design
integrates prior technology in a patent which exploits different light absorption properties between water and ethanol to
determine alcohol concentration. Through our revisitation studies, we found that light at the wavelength of 1450 nm has
strong distinguishability even with different types of commercially-available beverages. Our quantitative examinations on
alcohol concentration estimation revealed that Al-light was able to achieve the estimation accuracy of approximately 2 % v/v
with 13 commercially-available beverages. Although our current approach needs a regressor to be trained for a particular
ambient light condition or the sensor to be calibrated using measurements with water, it does not require beverage-dependent
models unlike prior work. We then discuss four applications our current prototype supports and future research directions.
CCS Concepts: • Human-centered computing → Ubiquitous and mobile devices; • Applied computing → Health
informatics;
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1 INTRODUCTION
Alcohol consumption may cause health and social problems [1], including liver and heart disease, depression,
and harassment. Rapid and chronic intake of alcohol can lead to acute intoxication and addiction, respectively.
Governments define alcohol consumption guidelines [25] for avoidance of such disease and symptoms. Control-
ling the intake of alcohol is thus important to prevent potential fatal diseases and addictions.

Alcohol intake tracking can contribute to healthy drinking activities, and there exist systems and services
for this purpose. AlcoDroid Alcohol Tracker 1, for example, is a smartphone app that offers a drinking diary to
help its users track drinking. IntelliDrink 2 is another mobile app which estimates users’ blood alcohol content
based on their annotations. However, systems like these apps require manual logging of the alcohol content and
volume of the drink users have taken. Users may also simply forget making these entries after drinking, which
potentially results in low compliance and sparse data records or under-estimation of the consumption [19].
1https://www.appbrain.com/app/alcodroid-alcohol-tracker/org.M.alcodroid
2http://www.intellidrink.com/
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Fig. 1. Al-light is a smart ice cube that can estimate the alcohol concentration level of a beverage using near-infrared and
visible light. (a) the transparent version; (b) colored in black to minimize effect by ambient light; and (c) Al-light in use.

A key technology in alcohol intake logging systems is an automated way to measure alcohol concentration
of a beverage users are taking. Quantitative methods and devices for alcohol concentration estimation exist [3,
9, 13], but are generally designed for professional analysis or laboratory use. Research in ubiquitous computing
therefore needs investigations on technology for liquid alcohol concentration estimation for daily use.

We develop Al-light, a smart ice cube device that is small enough to be put into a glass and can estimate the
alcohol concentration of a beverage. It uses off-the-shelf near-infrared (NIR) and visible LEDs and optical sensors
for alcohol concentration estimation. The NIR LED has a peak wavelength where the light absorption property of
water and ethanol is distinctive. This smart ice cube can infer alcohol concentration by analyzing light intensities
observed by the optical sensors. Although prior work by Benes [3] has reported this optical property of ethanol,
our primary contributions are an instantiation of this method in the form of a smart ice cube and an evaluation of
its estimation performance with a variety of commercially-available beverages. Through our revisitation studies
on Benes’ approach, we found that light at the wavelength of 1450 nm has strong distinguishability even with
different types of commercially-available beverages. Our quantitative examinations with the Al-light prototype
revealed that the estimation accuracy was approximately 2 % v/v with 13 commercially-available beverages.
The system was able to achieve this performance when a regressor was trained for a particular ambient light
condition or the sensor was calibrated using measurements with water before use. Our results thus suggest that
Al-light does not require beverage-dependent models.

This work offers the following research contributions to the fields of Human-Computer Interaction and
ubiquitous computing:

• Revisitation study of Benes’ results: We revisit Benes’ method [3] with a broader set of commercially-
available beverages, confirming that NIR light at the wavelength of 1450 nm has strong estimation power.

• Implementation of Al-light: We design a smart ice cube that embeds NIR and visible LEDs as well
as photodetectors for alcohol concentration sensing. Users can simply place Al-light into a beverage for
alcohol concentration estimation.

• System evaluations on alcohol content estimation: Using Support Vector Regression, we found that
Al-light was able to achieve the estimation accuracy of approximately 2 % v/v with 13 commercially-
available beverages if a regressor was trained for a particular ambient light condition or the sensor was
calibrated using measurements with water. Our approach does not require beverage-dependent training,
extending the generalizability of Benes’ results [3].
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In this paper, we first discuss related work on beverage classification and identification, methods for alcohol
concentration determination, and smart devices and tracking systems for drinking activities. We then report our
experiments to revisit Benes’ method using alcohol aqueous solutions and 18 commercially-available beverages.
The results of this revisitation studies confirm a potential to estimate alcohol content of commercially-available
beverages with 1450 nm NIR light. We then explain the design and prototype implementation of Al-light.
This paper also reports our system evaluations on alcohol content estimation with 13 commercially-available
beverages. We discuss potential applications enabled by Al-light and conclude the paper with future work.

2 RELATED WORK

2.1 Beverage Classification and Identification Methods
Automatic identification of beverage can help health management because liquid occupies 21% of daily calorie
intake [6]. Researchers in the field of food engineering have developed various methods of beverage identification
to address the demand for food safety and authenticity. A traditional classification approach is to determine the
quality and content of different constituents by using chemical analysis methods and machines. To classify
milk tea, for example, a system would measure milk quality, sugar content, and other ingredients like catechin
and iron [16]. However, these chemical methods are time-consuming and often require professional equipment.
Near-infrared spectroscopy [20] is another identification method for beverage identification. It measures the
absorption of NIR light (700 to 2500 nm) in a test liquid. It enables a fast, non-destructive, and non-invasive
analysis and offers accurate identification results [4, 16]. Chen et al. [4] achieved identification of 20 kinds of
green tea at accuracy of 95% by using near-infrared spectroscopy and a machine learning method. But, these
approaches rely on expensive hardware, and can not be easily incorporated in sensors for daily use. Lester et
al. [15] designed a rod-like hardware prototype that replaces a spectroradiometer with less expensive electronic
components, including eight LEDs and a color sensor. Users can put their prototype in a glass for beverage
identification. Their experiment showed that it achieved identification of ten beverages at 60% accuracy.

Unlike the work above, the main focus of our work is alcohol concentration estimation using an optical method.
Our work complements the prior work by adding the capability of alcohol concentration sensing. For instance,
a future device may determine the type of a beverage as well as its alcohol content through integration of Lester
et al.’s method [15].

2.2 Beverage Alcohol Content Estimation Methods
The most traditional method for alcohol concentration determination is to use a physical property (e.g.,
measuring relative density by a hydrometer [13]). But, it requires distillation and temperature adjustment, and
does not fit to smart devices in a small form factor. Near-infrared spectroscopy is another method effective for
alcohol concentration determination which can be suitable for smart devices. Gallignani et al. [9] examined a
method using the first derivative of the near-infrared absorption spectrum to estimate alcohol concentration of
21 alcoholic beverages including beer, wine, whiskey, and ram. Their method measures the derivative absorption
values to detect a peak and valley at 1680 nm and 1703 nm, respectively. This contributes to elimination of the
interference on the spectral baseline caused by constituents other than water and ethanol. However, measuring
derivative absorption values require expensive equipment that can perform high-resolution spectrum sensing,
such as a spectroradiometer.

Benes [3] patented his invention on an inexpensive handheld device and method to determine the alcohol
content of liquids. The device consists of an NIR detector, a cell into which a test liquid can flow, and three
LEDs whose peak wavelengths are at 1200, 1300, and 1450 nm. The device used one of the three wavelengths
to compensate for light scattering in liquids and the other two to determine alcohol content and the other
substances (e.g., sugar). Benes reported that with his device, he was able to develop a model to estimate alcohol
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content of 24 kinds of wine (with 9.0 – 13.3 % v/v alcohol) at 0.28 % v/v standard error of cross validation (SECV),
and another model to estimate alcohol content of 28 kinds of beer (with 0 – 9.6 % v/v alcohol) with 0.06 % v/v
SECV along with density and color measurement. Although his method achieved great accuracy on alcohol
concentration estimation, it requires a model to be trained individually for each kind of beverages.

Rahman et al. [23] explored another method for alcohol concentration prediction. Their system, Nutrilyzer,
detects adulterants in liquid using photoacoustic effect. Nutrilyzer consists of an array of 16 LEDs which have
various peak wavelengths ranging from ultraviolet (385 nm) to NIR (940 nm). Although Nutrilyzer showed
successful results for milk nutrient prediction, its performance in alcohol concentration prediction was limited.
One possible reason for this limited performance was that the system did not include NIR light in longer
wavelengths.

Our work extends Benes’ findings by uncovering its performance of alcohol concentration sensing with a
broader set of beverages and instantiating the technology as a smart device. It thus demonstrates the feasibility
of creating an alcohol-aware smart ice cube.

2.3 Smart Devices for Liquid Intake Activities
Research and industry have made various smart devices to track and support drinking activities (not limited to
alcohol consumption). H2OPal Smart Bottle Hydration Tracker 3 is a commercially-available smart water bottle
that connects to a smartphone. It estimates users’ hydration levels through data obtained from the built-in weight
measuring sensor and accelerometer. The device provides notifications when they should get hydrated. Lessel et
al. presented WaterCoaster [14], a coaster which measures the weight of the liquid in a container. Their system
also offers a gamification application to motivate people to drink water frequently and regularly. Fan et al. [7]
developed capacitive sensors which can be easily attached to the outside of containers to track the level of the
liquid inside. Their sensor was able to determine a liquid level with correlation coefficients higher than 0.98.
IllumiMug [22] is an intelligent cup which can sense and visualize the level and temperature of a liquid inside.
It enables interactive applications, such as supporting cocktail making and notifying users when the liquid gets
cooled down.

A cube form factor is also common for smart devices to support drinking activities. A concept smart cube
developed at MARTINI® automatically places a refill order when a glass becomes empty4. Dand created
Cheers [5], a smart ice cube which infers how drunken a user is by counting the number of sips and elapsed
drinking time using a built-in accelerometer. When the user is considered to be severely drunk, a red LED inside
the cube illuminates for a warning, and the user’s friends receive an emergency text message.

The work above has demonstrated sensing capabilities of liquid levels, temperature, and intake counts. Our
device can co-exist with these technologies, and would enable additional applications. For example, a future
system may be able to sense the amount of consumed alcoholic beverages their concentration levels. It could
thus estimate the total amount of alcohol consumption, enabling novel tracking applications.

2.4 Alcohol Intake Tracking
Alcohol intake tracking is another technology recently explored around drinking activities. It aims to obtain
detailed information to encourage healthy drinking. For example, alcohol addiction is a strong symptom and
may lead to fatal disease, and external support is necessary for recovery. According to McKay et al., 50%
of alcohol-addicted patients they surveyed suffered a recurrence of addiction within 2 years after their treat-
ment [17]. Research therefore has developed systems to support prevention and treatment of alcohol addiction.
Existing systems incorporate various methods for alcohol intake tracking: self-reporting [19]; biological sensing

3https://www.h2opal.com/
4https://www.bacardilimited.com/new-martini-smart-cube-technology-makes-waiting-bar-thing-past/
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Fig. 2. The apparatus for our revisitation studies. The sample cuvette in this figure contains 23.0 % v/v alcohol aqueous
solution.

using a breathalyzer [26]; transdermal alcohol monitors [18, 24]; and behavioral patterns monitoring using
wearable sensors [10] and smartphones [2, 8]. BACTrack 5 is a commercially-available breathalyzer that can
connect to a smartphone for recording users’ blood alcohol content. Hsu et al. created a system to help patients
record their drinking activities for professional treatment [11]. Their interviews with clinicians revealed that
understanding moments when patients experience their impulse for drinking was valuable in addition to their
alcohol consumption. They also developed another smartphone-based system for a person not to commit to
drunk driving again [12].

These systems and applications clearly demonstrate the importance of tracking alcohol drinking. Al-light
measures liquid alcohol concentration levels, and would offer additional information about users’ drinking
activities. Our work offers a novel sensing capability of beverage alcohol concentration, potentially enhancing
the applications above.

3 REVISITATION STUDY ON BENES’ METHOD
We conducted two quantitative experiments to examine the feasibility of Benes’ alcohol content determination
method [3]. Although Benes’ method is seemingly promising for our purpose, his investigation did not include
different kinds of commercially-available alcoholic beverages (e.g., liquor and whiskey). In addition, his findings
are based on beverage-dependent models which would limit practicality of the device to be developed. Thus, our
objectives of this revisitation are:

• Understanding the performance of Benes’ method using various kinds of alcoholic beverages, and
• Uncovering a potential of building beverage-independent models for alcohol concentration estimation.

3.1 Experimental Setup
We created an apparatus with which we can re-experiment Benes’ method in a controlled setting (Figure 2). The
custom-made black holder (H: 20.0 mm x W: 16.7 mm x D: 23.1 mm) can accommodate an LED, a photodiode, and
5https://www.bactrack.com/
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a transparent cuvette which contains a test liquid. The LED and photodetector are placed face-to-face across the
cuvette for light intensity measurements. We used the three following NIR LEDs: MTE0012-015-IR, MTE0013-
015-IR, and MTE5014-015-IR (all from Marktech Optoelectronics). Their peak wavelengths are 1200 nm, 1300 nm,
and 1450 nm, respectively, corresponding to Benes’ experiment. As our apparatus can hold only one LED at a
time, we manually switched them during measurements. We chose SD039-151-011 (from Luna Optoelectronics)
as the photodetector because of its wide spectral coverage in the NIR region (from 800 nm to 1700 nm). The
cuvette is the size of H: 45 mm x W: 12.5 mm x D: 12.5 mm. Its inside is a square of 10 mm, and can contain up
to 4.5 ml of a given test liquid. We performed this experiment under a fixed light condition (in a laboratory with
normal ceiling light but without sunlight).

The LED and photodetector were connected to a circuit board for measurements. It includes a transimpedance
amplifier circuit to convert the current output of the photodetector to a voltage. The ADC converter in an Arduino
Uno on the circuit board receives the converted voltage, and discretizes it as a 10-bit value. We used LMC6484
(an op-amp from National Semiconductor) for the transimpedance circuit.

3.2 Experiment Using Alcohol Aqueous Solutions
We first experimented Benes’ approach using alcohol aqueous solutions. As alcohol aqueous solutions are trans-
parent and do not contain impurities, this experiment was intended to uncover the measurement performance
in ideal light and liquid conditions.

3.2.1 Procedure. We prepared alcohol aqueous solutions with 32 different concentration levels: 0.0 – 1.5 % v/v
at intervals of 0.5 % v/v (percent volume/volume); 2.0 – 23.0 % v/v at intervals of 1.0 % v/v; 23.0 % v/v; and 25.0
– 50.0 % v/v at intervals of 5.0 % v/v. We deliberately set finer granularity for low concentration levels (0.0 – 1.5
% v/v) to examine distinguishability power.

During each measurement, we recorded 1,000 samples of light intensity values with the sampling rate of
200 Hz, and adopted its median as their representation. We measured five times for each liquid sample and LED.

3.2.2 Results. Figure 3 shows the observed light intensity values with the three LEDs. A dot and its error bar rep-
resent the average value and standard deviation of five measurements for each concentration level, respectively.
The measurements with all the three LEDs exhibited clear linear relationships against concentration levels. This is
in line with Benes’ report [3]. Our linear regression analysis found high coefficients of determination (R2 > 0.97
for all LEDs). The resulted linear functions for 1200 nm, 1300 nm, and 1450 nm are as follows:

1200 nm : Î1200 = 2.279c + 778.292 with R2 = 0.977
1300 nm : Î1300 = 6.013c + 608.767 with R2 = 0.983
1450 nm : Î1450 = 1.046c + 45.251 with R2 = 0.979

In these equations, c represents alcohol concentration (% v/v). Îλ represents a light intensity value prediction
with the λ nm LED.

Although all LEDs demonstrated clear relationships with alcohol concentration levels, we also observed
several performance differences. The 1200 nm LED tended to exhibit large standard deviations at the alcohol
concentration levels of 0.0 % v/v – 23.0 % v/v as shown in Figure 3. Because many alcoholic beverages are below
15.0 % v/v, this is not desirable. Ethanol and water have similar absorbance with light at a wavelength 1200 nm,
but the difference becomes larger at 1300 nm and 1450 nm [3]. Thus, 1200 nm may rather serve to calibrate
light intensity measurements. Our results thus confirm that 1300 nm and 1450 nm have strong distinguishability
power for alcohol concentration.
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(a) 1200 nm (b) 1300 nm

(c) 1450 nm

Fig. 3. Observed light intensity values against concentration levels of alcohol aqueous solutions with the three NIR LEDs.
Each dot represents the average value of five measurements for each concentration level. The error bars represent the
standard deviation. The measurements with all the three LEDs exhibited linear relationships against concentration levels.
The linear regression analysis found high coefficients of determination (R2 > 0.98 for all the NIR LEDs).

3.3 Experiment with Commercially-Available Alcoholic Beverages
We next experimented with commercially-available alcoholic beverages. The goal of this part of the experiments
was to confirm how well Benes’ method performs with real beverages.

3.3.1 Procedure. Table 1 shows 18 commercially-available beverages tested in this experiment. Our set of
beverages included wines, beers, sake, spirits (distilled alcoholic drinks), and liquor-based drinks (e.g., cocktails
and sours). We deliberately chose beverages with different colors, content, additives, and concentration levels.
The range of stated alcohol concentration levels was 3 – 40 % v/v. Thirteen of the beverages included sugar (i.e.,
natural sugars or added sucrose). Eight of them were carbonated, and only one contained probiotic drinks. We
used the same apparatus and data collection procedure as the previous experiment.

3.3.2 Results. Figure 4 shows our measurement results with the 1450 nm LED. The results again clearly
demonstrate a linear trend in this case. Contrary to our expectations, the liquid colors did not affect much
in this experiment. We had similar results with the other LEDs though linearity was the most clear in 1450 nm.

As the results still revealed relatively strong linear relationships, we next examine alcohol concentration level
prediction performance using machine learning methods. We used the following machine learning methods:

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 126. Publication date: September 2018.
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Table 1. Eighteen beverages used in our revisitation study. A blank field in the Color column represents that the beverage
is non- or thin-colored.

Beverage Stated alcohol
content (% v/v) Carbonated Color Opaque

White wine 1 11
Red wine 1 11 wine red
White sparkling wine 1 13 ✓
Red wine 2 13.5 wine red
Beer 1 5 ✓ pale gold
Beer 2 5 ✓ dark brown ✓
Sake 1 14
Sake 2 15.5
Distilled liquor 1 12
Distilled liquor 2 20
Distilled liquor 3 25
Vodka 1 40
Whiskey 1 40 brown
Mixed drink 1 (Vodka, soda, and plum juice) 3 ✓
Mixed drink 2 (Vodka, soda, and probiotic drinks) 3 ✓ white ✓
Mixed drink 3 (Vodka, soda, and pineapple juice) 5 ✓
Mixed drink 4 (Whiskey and carbonated water) 7 ✓ amber
Mixed drink 5 (Vodka, soda, and grapefruit juice) 9 ✓

Fig. 4. The 1450 nm LED light intensity plot for the 18 alcoholic beverages shown in Table 1.

• Linear Regression (LR),
• Gaussian Process Regression (GPR),
• Decision Tree (DT), and
• Support Vector Regression (SVR) with the linear kernel.
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Table 2. The mean absolute estimation errors for commercially-available beverages in our revisitation study. The value in
the parenthesis represents the standard deviation. The bold font represents the best performance among the combinations
of the light sources for each machine learning method.

Feature LR GPR DT SVR
1200 5.05 (4.38) 4.29 (3.34) 2.75 (2.19) 2.98 (3.84)
1300 1.56 (1.14) 2.92 (3.10) 1.87 (1.53) 1.12 (0.87)
1450 1.32 (1.09) 2.78 (2.65) 1.93 (1.57) 1.13 (0.90)

1200 + 1300 1.53 (0.79) 3.15 (3.29) 2.08 (1.59) 1.66 (0.88)
1300 + 1450 1.42 (1.19) 14.5 (10.8) 1.97 (1.52) 1.11 (0.83)
1200 + 1450 1.43 (1.16) 13.8 (11.3) 2.06 (1.59) 1.32 (0.86)

1200 + 1300 + 1450 1.51 (1.01) 3.15 (3.32) 2.15 (1.47) 1.64 (2.04)

We performed cross-validation for our estimation accuracy evaluation. We left the data for one beverage out
for testing, and used the rest for training (Leave-one-beverage-out, or LOBO). The feature values were normalized
before training and testing. We replaced negative estimated values with zero.

Table 2 summarizes the mean absolute errors across the four machine learning methods and the combination
of light sources. All the methods except GPR generally performed well. In particular, DT and SVR showed stable
performance. The regulation in the country we conducted an experiment allows labeling of alcohol concentration
levels to have tolerance of 1 % v/v. In addition, an exception of 2 % v/v tolerance is allowed for beverages which
are made through fermentation and do not involve distillation (e.g., beer and sake). Thus, the overall estimation
errors in this experiment were reasonable.

The combinations of light sources that achieved the best performance were different across the machine
learning methods: 1450 nm for LR and GPR; 1300 nm for DT; and 1300 nm and 1450 nm for SVR. A closer look
into the result found that the performance using 1450 nm was close to the best for DT and SVR. We thus decided
to further examine the estimation performance for SVR with 1450 nm as the feature.

Table 3 shows the mean estimation errors using SVR with 1450 nm as the feature. Most of the estimations were
accurate, confirming the distinguishability power of 1450 nm. The performance with the mixed drinks, on the
other hand, was not well. There are possible factors that can negatively impact on estimation. Carbon dioxide gas
in sparkling drinks may cause estimation errors because bubbles disturb NIR light absorption. Thus, carbonated
liquid absorbs less NIR light than a mixture of water and ethanol. For the sparkling mixed drink with probiotic
drinks (Mixed drink 2), the light diffusion by the precipitate may have further lowered observed intensity. As a
result, estimations might have become less accurate for such beverages.

In summary, our revisitation studies uncovered that measurements with the 1450 nm LED were the most
promising for alcohol content estimation. As our smart device needs to be downsized, integration of an 1450 nm
LED may be sufficient for our purpose. Our revisitation studies also suggest that we need compensations for
additives and carbonated drinks. We therefore took this into consideration for our device and hardware design
of Al-light.

4 AL-LIGHT PROTOTYPE

4.1 Device Form Factor Exploration
Our revisitation studies on Benes’ method confirm its potential of alcohol concentration sensing. In particular, an
1450 nm LED is the key light source for determining alcohol concentration. These findings lead us to developing
a prototype device based on this approach.
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Table 3. The estimation results using SVR and the 1450 nm LED data as the feature in our revisitation study.

Beverage Stated Estimated Beverage Stated Estimated
Mixed drink 1 3 6.23 (0.19) Distilled liquor 1 12 10.1 (0.08)
Mixed drink 2 3 1.17 (0.19) Sparkling wine 1 13 12.6 (0.27)
Beer 1 5 5.93 (0.15) Red wine 2 13.5 11.0 (0.31)
Beer 2 5 5.55 (0.17) Sake 1 14 14.4 (0.09)
Mixed drink 3 5 7.56 (0.23) Sake 2 15.5 16.0 (0.19)
Mixed drink 4 7 6.80 (0.09) Distilled liquor 2 20 19.2 (0.17)
Mixed drink 5 9 7.80 (0.13) Distilled liquor 3 25 26.3 (0.09)
White wine 1 11 11.3 (0.19) Vodka 1 40 40.4 (0.08)
Red wine 1 11 10.1 (0.31) Whiskey 1 40 39.6 (0.16)

Fig. 5. The Al-light prototype. It is the size of 31.9 x 38.6 x 52.6 mm. The circuit inside includes an NIR and RGB LED, an NIR
photodetector, a color sensor, RedBearLab BLE Nano 2, a receiver coil for wireless powering, and a battery. The device also
contains small weights so that the direction of the hollow would be orthogonal to the bottom of a glass.

There are several potential form factors for alcohol-sensitive smart devices. For instance, integration into a
straw or swizzle stick can be a candidate design. Direct integration into a glass or cup could be another direction.
To determine the device form factor, the most critical consideration is that the device needs to have a certain gap
between the light source and receiver for accurate estimation. If an LED and photodetector are placed too close,
light absorption would decrease in general. Thus, measurements would become less reliable. With a straw-like
device, ensuring a sufficient gap would be challenging. The form factor of a swizzle stick would suffer from
the same problem. We thus determined an ice cube shape for our prototype to accommodate hollow space
necessary for liquids to flow for alcohol concentration measurement. Although Dand [5] demonstrated the idea
of a smart ice cube, they did not include alcohol sensing capabilities. Compared to glass or cup-shaped devices,
ice cube-shaped devices have an advantage for usability with different glasses, containers, and beverages. We
thus decided to use the form factor of an ice cube for our prototype. It can accommodate additional sensors in
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the future (e.g., an accelerometer for counting gulps and a barometer for estimating the amount of a beverage)
to extend possible applications though this is not the primary scope of this work.

Note that the optical alcohol sensing method used in this work is not limited to the ice cube form factor.
Future work should investigate its integration to a variety of devices. One main contribution of this work is our
demonstration of an optical alcohol sensing method in a plausible device for daily use.

4.2 Hardware
Figure 5 is our current Al-light prototype. It is the size of 31.9 x 38.6 x 52.6 mm and can be placed in a glass. The
exterior is made of transparent plastic and sealed with silicone sealant to be waterproof. We color the exterior
in black to eliminate the ambient light (see Figure 1b). It embeds two small printed circuit boards (PCBs) that
are connected with each other by wires.

One PCB embeds a 1450 nm and RGB LED (MTSM5014-843-IR from Marktech Optoelectronics and OST-
BABS4C2B from OptoSupply, respectively) as light sources. The RGB LED serves for performing additional
measurements in the visible light spectrum for removing effect by color and impurities in beverages [9]. This
circuit board is also connected to a wireless power receiver coil (TSWIRX-5V2-EVM from Semtech Corporation).
It charges the lithium ion polymer (Li-ion) battery placed in the other side of the cube when a power transmitter
is sufficiently close. Otherwise, the device automatically gets activated and performs measurements. The other
PCB includes an NIR photodetector and digital color sensor (SD012-151-001 from Luna Optoelectronics and
S9706 from Hamamatsu Photonics, respectively). It also connects with RedBearLab BLE Nano 26 for controlling
the LEDs and measuring the light intensity observed in the photodiode and color sensor. The NIR photodiode is
connected to a two-stage amplifier circuit before an AD converter I/O pin in RedBearLab BLE Nano 2.  The
color sensor is directly connected to the pins. The AD converter generates a 12-bit value of the given voltage.

In addition to these circuits, the device also includes four weights (30 g in total) at its bottom. These weights
make the cube sink and stay in a way that the hollow is orthogonal to the bottom of a glass. Light intensity
measurements can be stable in this manner. In addition, bubbles in carbonated beverages can escape from the
hollow easily. We expect this design to minimize the negative effect caused by such bubbles.

The number of the I/O pins in RedBearLab BLE Nano 2 is only nine besides TX/RX for Bluetooth communica-
tion. The LEDs, the color sensor, and the photodetector need 4, 4, and 1 I/O pins, respectively. We decided not
to include additional sensors which could enhance the use of our device (e.g., an accelerometer). This would not
defeat the main objective of our work though a future prototype is encouraged to accommodate such sensors.

As RedBearLab BLE Nano 2 contains a Bluetooth Low Energy (BLE) module, it wirelessly transmits
measurement data to a computing device (e.g., a smartphone). The computing device then performs alcohol
concentration estimation using machine learning approaches (explained in the next section).

5 ALCOHOL CONCENTRATION ESTIMATION STUDY
We conducted quantitative evaluations with our Al-light prototype to examine its performance on alcohol
concentration estimation.

5.1 Experimental Setup
5.1.1 Light conditions. To investigate the performance of Al-light in realistic light settings where drinking
activities occur, we set the following three conditions.

• Bright: At the window in a room in the afternoon. The average light intensity was 1898 lx (SD=143). This
condition represents a case where people drink in a restaurant during daytime.

6https://redbear.cc/product/ble-nano-2.html
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Table 4. Thirteen beverages used in our evaluation with Al-light. A blank field in the Color column represents that the
beverage is non- or thin-colored.

Beverage Stated alcohol
content (vol %) Carbonated Color Opaque

Bottled water 0
Alcohol-free beer 0 ✓ pale gold
Cider 3 ✓
Beer 1 5 ✓ pale gold
Beer 2 5 ✓ dark brown ✓
Mixed drink 6 (Vodka, soda, and lemon juice) 5 ✓
Mixed drink 7 (Vodka, soda, and orange juice) 5 ✓ orange ✓
White wine 2 10
Red wine 3 11 wine red
Sake 3 13.5
Sake 4 19
Whiskey 2 37 brown
Vodka 2 37.5

• Normal: Inside a room in the afternoon with lighting but apart from the window. The average light intensity
was 692 lx (SD=247). This condition represents a case where people drink at restaurants or home.

• Dark: Inside a dark room with indirect lighting. The average light intensity was 39 lx (SD=8). This condition
represents a case where people drink at bars.

5.1.2 Beverages. We chose 2 non-alcoholic beverages and 11 commercially-available alcoholic beverages (3 –
37.5 % v/v) that had various colors and alcohol contents. Table 4 shows all the beverages we tested. There were
six kinds of carbonated beverages. Six of the 13 beverages were colored, and two of them were opaque. We
deliberately chose different beverages that were not used in our revisitation study. Alcohol aqueous solutions
showed clear linear relationships in our revisitation study because they are colorless and contain no impurities.
We removed transparent, non-colored distilled liquors for the same reason. We also included a different mixed
drink that is also opaque (Mixed drink 7) as well as alcohol-free beer for comparison against beer.

5.2 Data Collection
At each measurement trial, we first collected the intensity values when all the LEDs were off, and then turned
them on in sequence. The measurement with the NIR LED takes 200 msec. We changed exposure durations for the
digital color sensor when the RGB LED was on (8, 40, 20 msec for R, G, and B, respectively) and off (200 msec for
all). The color sensor returns the accumulated observed values over the duration. When the RGB LED was off, the
returned value with a short duration would thus be very small (i.e., under-exposure). Similarly, the color sensor
would be easily over-exposed with a long sensing duration. The duration values were experimentally determined
to avoid both under- and over-exposure in both states of the RGB LED. As the NIR photodiode outputs an analog
value as voltage, we did not change measurement durations in NIR measurements. The current prototype thus
took roughly 1 sec for obtaining the whole series of measurements and sending it to a computing device.

We collected four data samples for each beverage and light condition. For each data sample, we rotated the
prototype along the axis perpendicular to the hollow by 90 deg before starting measurements. After placing the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 3, Article 126. Publication date: September 2018.



Al-light: An Alcohol-Sensing Smart Ice Cube • 126:13

(a) Bright (b) Normal

(c) Dark

Fig. 6. The mean observed NIR intensity values under the three light conditions. The error bar represents the standard
deviation. Note that most of the standard deviations were very small. Blue circles and red triangles represent non-colored
and colored beverages, respectively.

device, we randomly started measurements for one second. During measurements, the prototype stayed still at
the bottom of a glass. The direction of the hollow was orthogonal to the plane of the glass bottom.

After measurements, we subtracted intensity values collected when the NIR LED was off from measurements
with the NIR LED on to eliminate the ambient light effect. We denote the resulted value as NIR∆. For RGB
measurements, we first calculated the measured light intensity value per msec for the two LED states, and
subtracted to obtain similar metrics to NIR (denoted asR∆,G∆, andB∆). During the data collection, the prototype
was connected with a computer over Bluetooth.

5.3 Light Intensity Measurement Results
Figure 6 shows our NIR light intensity measurement results under the three light conditions. Similar to our
revisitation studies, we found clear linear relationships on many of the tested beverages. Carbonated beverages
in thin colors (e.g., cider) also exhibited similar tendencies to those that are still and non-colored. However,
beverages in dark colors demonstrated lower light intensity measurements (i.e., high absorption). We also
observed that the measurements were shifted across the light conditions, but the trends were the same. We
re-plotted the data by subtracting NIR light intensity measurements from that of water under each condition
(denoted as NIR∆, Figure 7). All three conditions are closely overlapped. This plot suggests that NIR light
intensity measurements can become stable if we have baseline data (e.g., measurements with water).
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Fig. 7. The mean NIR intensity plot with standardization of water for each light condition. The dots representing the same
beverage are grouped.

Table 5. The mean RGB values normalized with the measurements of water under the Bright condition. Note that the RGB
values for each beverage were stable across the light conditions. All the standard deviations were less than 0.01.

Bright Normal Dark
Beverage Red Green Blue Red Green Blue Red Green Blue

Bottled water 1 1 1 1.00 1.00 1.00 1.00 1.00 1.00

N
on

-c
ol

or
ed

Cider 1.01 1.01 0.97 1.00 0.99 0.97 1.00 0.99 0.97
Mixed drink 6 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
White wine 2 1.00 0.99 0.96 1.01 0.99 0.96 1.01 0.99 0.96
Sake 3 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Sake 4 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.01 1.01
Vodka 2 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02

Co
lo

re
d

Alcohol-free beer 0.98 0.92 0.82 0.98 0.92 0.82 0.98 0.92 0.82
Beer 1 0.97 0.93 0.82 0.97 0.92 0.82 0.97 0.92 0.82
Beer 2 0.43 0.10 0.01 0.43 0.10 0.01 0.43 0.10 0.01
Mixed drink 7 0.79 0.74 0.46 0.79 0.74 0.46 0.79 0.74 0.46
Red wine 3 0.58 0.03 0.04 0.58 0.03 0.04 0.58 0.03 0.04
Whiskey 2 0.97 0.91 0.77 0.97 0.91 0.77 0.98 0.91 0.77

We next look into the effect of liquid colors. Table 5 illustrates the measured RGB values of the tested beverages
normalized with that of water under the Bright condition. Unlike the NIR measurements, the RGB values for
all the beverages were very similar regardless of the light conditions. This implies that additional calibration
for ambient light may not be necessary for the RGB LED. In addition, beverages in dark colors exhibited
distinguishably low values (e.g., Beer 2). These beverages also exhibited lower light intensity observations
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with the NIR light than non-colored drinks. Therefore, this result suggests a potential to compensate NIR
measurements with RGB light.

5.4 Alcohol Concentration Estimation Methods
We next examined how well the Al-light system can infer the alcohol concentration level using supervised
machine learning approaches. We used SVR with linear kernel as it demonstrated the overall best performance
in our revisitation studies.

We also examined estimation performance through two different training procedures (explained below). All
the feature values were normalized before training and testing. We replaced negative estimated values with zero.
We calculated the absolute difference between the label (stated in the beverage container) and predicted alcohol
concentration as our error metric.

5.4.1 Light-condition-dependent Training (LCDT). In this procedure, we trained and tested a regressor using the
data under the same light condition. We left the data for one beverage out for testing, and used the rest for
training (i.e., LOBO). We used R∆, G∆, B∆, and NIR∆ as the features.

5.4.2 Light-condition-independent Training (LCIT). In this procedure, we trained a regressor using the data
under the two of the light conditions. We then tested it with the data under the other light condition. We also
employed LOBO in our cross validation. For example, in order to test estimation for whiskey under the Bright
condition, we trained a regressor with the data of the other beverages under Normal and Dark. We used R∆,G∆,
B∆, and NIR∆ as the features. R∆, G∆, and B∆ are the RGB intensity values after we subtracted from that of
water under each condition. As shown in Table 5, these values were the same across the conditions, including
the water measurements. Thus, the values of R∆, G∆, and B∆ were the same regardless of which of the three
water measurement data we used.

5.5 Alcohol Concentration Estimation Results
Table 6 shows the estimation performance results under the LCDT and LCIT procedure using SVR. The
inclusion of the RGB channels contributed to improvements on estimation. However, their combinations did
not necessarily lead to better performance. Even only one of RGB offered comparable improvements to the
cases of using two or all channels. In addition, we did not see clear differences among the RGB channels. We
thus chose the combination of NIR and blue light for further analysis.

Table 7 presents estimated alcohol concentration for the beverages excluding water using SVR and the NIR
and blue light as features. The estimation was generally accurate, but colored beverages tended to result in large
errors. In particular, Mixed drink 7 (Vodka, soda, and orange juice) led to clear under-estimation due to low
observed light intensity.

We observed similar performance results with the LCIT procedure, presented in the rightmost column in
Table 6. SVR with the features of NIR, green, and blue showed a comparable result of 2.11 (SD=2.02). Table 7
shows the estimation results for each beverage. Again, the colored beverages tended to exhibit large errors.
However, the estimation was generally accurate in this case as well. Using more visible LEDs did not lead to
noticeable improvements in estimation accuracy of colored beverages.

6 DISCUSSION

6.1 Findings
The experiment showed promising results for alcohol concentration estimation with Al-light. In the LCDT
setting, Al-light was able to achieve 1.72 – 2.47 absolute errors from the stated alcohol concentration levels under
the best combination of the features and machine learning methods. We observe similar performance results in
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Table 6. The mean absolute estimation errors with the light-condition-dependent training (LCDT) and the light-condition-
independent training (LCIT) procedure using SVR. The value in the parenthesis represents the standard deviation.

Feature LCDT LCITBright Normal Dark
NIR 3.41 (2.33) 4.10 (3.45) 2.86 (2.42) 2.90 (2.18)

NIR+R 2.07 (1.82) 3.11 (2.87) 1.79 (1.98) 2.15 (1.85)
NIR+G 2.89 (1.97) 3.66 (3.24) 2.06 (2.05) 2.42 (2.37)
NIR+B 2.41 (1.73) 2.71 (2.55) 1.80 (1.80) 2.12 (2.07)

NIR+RG 2.70 (1.83) 3.44 (3.16) 2.40 (2.64) 2.53 (2.47)
NIR+RB 2.82 (2.15) 3.21 (3.08) 2.10 (1.87) 2.31 (2.21)
NIR+GB 2.10 (1.76) 2.98 (2.34) 1.72 (1.22) 2.11 (2.02)

NIR+RGB 2.41 (1.60) 3.10 (3.17) 2.87 (2.50) 2.12 (2.21)

Table 7. Estimated alcohol concentration for the thirteen beverages in Table 4. The LCDT procedure used NIR and blue light
as features. Using all visible light channels did not lead to noticeable improvement under LCIT.

Beverage Stated Color Estimated (LCDT) Estimated (LCIT)
Bright Normal Dark NIR+B NIR+RGB

Bottled water 0 0.00 (0.00) 1.04 (0.98) 0.00 (0.00) 0.42 (0.41) 0.26 (0.37)
Alcohol-free beer 0 pale gold 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.62 (0.73) 1.34 (1.99)
Cider 1 3 5.65 (0.45) 2.55 (1.31) 4.80 (0.25) 4.96 (2.36) 4.82 (2.43)
Beer 1 5 pale gold 7.39 (0.73) 5.49 (0.31) 6.43 (0.33) 6.76 (2.12) 7.65 (2.22)
Beer 2 5 dark brown 2.13 (1.12) 1.52 (0.33) 4.31 (0.32) 3.84 (2.92) 8.13 (3.98)
Mixed drink 6 5 4.80 (0.71) 4.93 (1.20) 5.51 (0.49) 5.28 (0.99) 5.14 (0.89)
Mixed drink 7 5 orange 0.00 (0.00) 3.17 (1.65) 0.00 (0.00) 0.08 (0.29) 0.24 (0.61)
White wine 2 10 9.31 (0.13) 12.4 (0.62) 10.9 (0.18) 11.0 (0.68) 11.02 (0.70)
Red wine 3 11 wine red 15.4 (0.53) 18.1 (1.37) 12.5 (0.52) 16.9 (3.41) 13.67 (5.24)
Sake 3 13.5 16.4 (1.51) 13.8 (1.09) 12.9 (0.32) 13.4 (1.63) 14.68 (2.17)
Sake 4 19 20.7 (0.26) 21.8 (0.33) 21.0 (0.29) 18.5 (1.37) 19.42 (1.16)
Whiskey 2 37 brown 32.5 (0.61) 29.2 (0.69) 31.4 (0.28) 35.0 (3.05) 35.62 (2.67)
Vodka 2 37.5 34.0 (0.42) 32.2 (0.39) 34.2 (0.59) 37.1 (0.81) 36.85 (1.04)

the LCIT setting. These results suggest that a system using Al-light does not need to build beverage-dependent
models for alcohol content estimation. We would like to note again that the regulation in the country we
conducted an experiment allows labeling of alcohol concentration levels to have tolerance of 1 or 2 % v/v. Thus,
our results confirm reasonable accuracy performance and the generalizability of the estimation approach.

Our results revealed that not all the RGB light would be necessary. This tendency appeared regardless of the
light conditions. We included RGB light for acquiring information about the chroma and brightness of a beverage.
All RGB channels may still be necessary if a future device attempts to identify a type of a beverage as well as its
alcohol concentration level [15]. However, our examination suggests that one of the RGB light may be sufficient
for alcohol concentration estimation, and it is a positive result for device downsizing.

The results confirmed that the system can eliminate effect by the ambient light if it has measurements with
water. This can be plausible in some use scenarios (e.g., lightly rinsing Al-light in water before putting into a
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beverage). Otherwise, additional calibrations would be necessary as our results in the LCDT procedure showed
differences in estimation.

Examinations on estimation errors for each beverage led to reasonable accuracy except colored beverages.
We did not observe clear negative effect by carbonated gas. This suggests that our device design to make the
hollow perpendicular to the glass bottom was successful. On the other hand, accurate alcohol content estimation
for colored beverages is still challenging. One possible explanation was that we only had six kinds of colored
beverages, and thus a regressor might not have enough training data. Future work should investigate estimation
performance with a broader set of drinks.

6.2 Limitations
We note that there are several limitations on our prototype device and experiments. The current prototype has
not been tested in actual drinking activities due to hygiene issues. Some materials (e.g., glues) used in the current
Al-light prototype are not safe for use in drinking scenarios. Future work should investigate the user experience
of Al-light and its applications in a realistic setting. Such studies may need additional considerations because
they involve alcohol consumption.

The experiment for alcohol concentration estimation included 3 light conditions and 13 different beverages. A
future study needs to investigate the performance of Al-light under a broader set of light conditions and drinks.
In particular, colored beverages tended to result in large estimation errors. Our beverage set was all manufactured
drinks, and we did not test our device with cocktails (mixed manually by people). Because the regulation in the
country allows labeling of alcohol concentration levels to have tolerance up to 2 % v/v, our results may need to
be revisited with reliable alcohol sensing methods, such as spectroscopic analysis.

We did not measure the power consumption and running time of the current Al-light prototype as it is not
the main focus of our work. It is a reasonable assumption that the alcohol concentration of a beverage would
not change drastically except for the scenario of creating a cocktail or mixed drink. Thus, sampling on Al-light
would not need to be very frequent. A future study should also study the power consumption of Al-light and an
efficient power management approach.

Although the current Al-light prototype is not very small yet (31.9 x 38.6 x 52.6 mm), we note that further
size reduction of Al-light is possible. We used the off-the-shelf micro controller (RedBearLab BLE Nano 2), but
a future design would directly place the chip on a custom-made circuit board. A future device may include a
heavier battery and remove weights. We set the gap in the cube to 5 mm, and a future study should examine
what the minimum distance is for reliable alcohol concentration estimation.

6.3 Applications
Al-light enables different applications around alcoholic beverage drinking in addition to simple tracking. Our
current system supports the following applications to demonstrate the versatility of Al-light. The accompanying
video includes the demonstrations of the following applications (Figure 8). Due to the limited number of I/O
pins in RedBearLab BLE Nano 2, we are not able to include additional LEDs for user feedback. We thus use a
transparent version of Al-light for the demonstration purpose, and the current Al-light devices uses the same
RGB LED for both visual feedback and measurements. Future prototypes should include additional light sources
for feedback to users.

Individual users may use Al-light for the following applications when they consume alcoholic beverages at
home. Restaurants and bars may also want to use Al-light to encourage customers to drink appropriately. The
smart cube developed by MARTINI®is also intended to be used in similar settings though the supported scenario
is different (i.e., automatic refill ordering). The applications presented in this section are examples that the current
Al-light prototype supports in common drinking scenarios.
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Fig. 8. Al-light application examples. (a) Visualizing alcohol concentration: it blinks in blue, green, and red for (a1) water,
(a2) wine, and (a3) whiskey, respectively. (b) Warning to people who cannot drink: it flashes in red to notify them that the
beverage of interest contains alcohol (b2). Otherwise, it blinks in blue, indicating that the beverage is safe to drink (b1).
(c) Supporting cocktail making: when users reach to the target alcohol concentration level, Al-light blinks in green (c3).
Otherwise, it blinks in blue and red if the current alcohol content level is (c2) below or (c1) above the target, respectively.

Visualizing alcohol concentration
Al-light can visualize how strong an alcoholic beverage is. When a user puts Al-light in a beverage, it blinks in
various colors to indicate the alcohol content level, ranging from blue (0 % v/v), green (10 % v/v) to red (37 % v/v).
In addition, there are people who cannot take any alcohol (e.g., people in pregnancy or people with allergies) and
it is difficult to distinguish whether a beverage contains alcohol by its visual appearance. Al-light has a mode
dedicated to such user populations. It flashes in red to warn them that the beverage of interest contains alcohol.
Otherwise, it blinks in blue, to indicate that the beverage is safe to drink.

Supporting cocktail making
Another application of Al-light is to support users’ cocktail making. After choosing a cocktail they desire to
create on a smartphone, Al-light is set to detect the target alcohol concentration level. Users then place it into
a glass and pour liqueur. When users reach to the target alcohol concentration level, Al-light blinks in green.
Otherwise, it blinks in blue and red if the current alcohol content level is below or above the target, respectively.
The intensity of the light indicates how far the target concentration level is. In this manner, users can create a
cocktail at a desired level of alcohol concentration.

Encouraging slow drinking
Drinking too quickly may cause acute alcohol intoxication, a serious symptom which might lead to death.
Al-light can inform users of their drinking pace by changing its blinking speed. The system loosely estimates
their drinking pace from a pre-defined number of consecutive 0 % v/v estimations (i.e., time for not drinking or
non-alcoholic beverage intaking). If the pace is faster than a threshold, Al-light rapidly flashes in red and blue
alternatively to inform them that they should slow down their pace.

7 CONCLUSION AND FUTURE WORK
Alcoholic beverages may harm health when their consumption is too large or rapid. Automatic tracking can help
people regulate alcohol consumption, but existing work has under-explored an approach to directly measure
beverage alcohol concentration designed for general user populations. We present Al-light, a smart ice cube
device which can sense the alcohol concentration level of a beverage. Al-light utilizes the NIR spectrometry
principle for alcohol concentration estimation. Our evaluations found that Al-light was able to achieve the
estimation accuracy of approximately 2 % v/v with 13 commercially-available beverages if a regressor was trained
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for a particular ambient light condition or measurements were calibrated with water. Our results also suggest
that the system does not require beverage-dependent models. This work demonstrates the feasibility of sensing
beverage alcohol concentration in a device form factor suitable to daily use. It thus encourages researchers to
further investigate integration of the Al-light technology into existing dietary sensing as well as improvements
on estimation accuracy.

Our future work will cover examinations on the user experience of Al-light in drinking contexts. Such studies
may include different stakeholders, ranging from consumers to restaurants and bar owners. We also plan to
develop mobile apps with Al-light to examine how the technology can encourage people who suffer from
drinking problems to change their behaviors. Methanol intoxication is another common problem related to
alcohol consumption. Detection of methanol mixing can expand use scenarios supported by Al-light [21]. We
will investigate such enhancement as well as its performance in the future.
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