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ABSTRACT 

Many mobile devices have touch-sensitive screens that 
people interact with using fingers or thumbs. However, 
such interaction is difficult because targets become 
occluded, and because fingers and thumbs have low input 
resolution. Recent research has addressed occlusion through 
visual techniques. However, the poor resolution of finger 
and thumb selection still limits selection speed. In this 
paper, we address the selection speed problem through a 
new target selection technique called Escape. In Escape, 
targets are selected by gestures cued by icon position and 
appearance. A user study shows that for targets six to 
twelve pixels wide, Escape performs at a similar error rate 
and at least 30% faster than Shift, an alternative technique, 
on a similar task. We evaluate Escape’s performance in 
different circumstances, including different icon sizes, icon 
overlap, use of color, and gesture direction. We also 
describe an algorithm that assigns icons to targets, thereby 
improving Escape’s performance. 

Author Keywords 
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ACM Classification Keywords 
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INTRODUCTION 
Everyone wants a mobile device to be small—until they 
start to use it. Tiny screens are hard to see, and tiny user 
interfaces are hard to control.  

Many mobile devices have a screen that a user can control 
by touch. Although these devices can also be controlled by 
a stylus, many people prefer to use their thumbs [10]. 

A recent research study of thumb use recommended that 
on-screen targets be no smaller than 9.2mm wide [13]. 
Below this size, performance begins to degrade when the 
user tries to select a target with a thumb since thumb-
presses are simply too large and too variable to give an 
accurate selection point. Although users can accurately 
select smaller targets by another method, such as by using a 
stylus, they lose the ease of thumb-based interaction. 
Furthermore, it is often not practical to make a target large 
enough for thumb-based interaction because larger targets 
occupy more space, leaving less room on a small display 
for other targets and information. 

Although users cannot accurately select targets smaller than 
9.2mm with direct thumb touch, techniques such as Offset 
Cursor [15] and the more recent Shift [17] improve 
selection accuracy by helping users refine their initial 
selection position. Originally designed for fingertip 
operation, these techniques overcome the general problem 
of digit occlusion by offsetting the cursor from the selection 
point (Offset Cursor), or by displaying an inset of the 
selection region (Shift). 

While these approaches are more accurate for smaller 
targets, they are also slower. When selecting a 12 pixel (2.6 
mm) target with a fingertip, participants using Shift made 
only about 20% as many errors as normal pointing, but took 
70% longer [17].  
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Figure 1. (a) It is difficult to select a target when it is 
surrounded by other selectable objects. (b) The icons in Escape
indicate finger gestures that disambiguate the selection. (c) A
thumb tap followed by a gesture (without the release of the 
thumb) enables a user to select the target quickly and 
correctly even when it is small or occluded by other objects. 



 

In this paper, we present “Escape,” an accurate and fast 
selection technique for small targets. Unlike conventional 
selection, in which the contact point alone determines the 
target, in Escape the contact point need only lie close to the 
target. If the point can be unambiguously associated with a 
single target, the user can then lift their finger or thumb and 
the selection is made. However, if multiple targets are near 
the contact point, the user instead gestures in a direction 
suggested by the icon, thus disambiguating the selection 
(see Figure 1). In our experiments, for targets between six 
and twelve pixels wide, target selection using Escape is on 
average at least 30% faster than using Shift, without a 
significant difference in error rate. 

Escape is presented in the context of thumb-based one-
handed target selection on a map application for a mobile 
touch screen. However, Escape could also be useful in other 
circumstances such as two-handed operation, general user 
interface widgets, and non-mobile devices.  

ESCAPE INTERACTION 
Figure 2 shows in more detail how the Escape selection 
technique works. The user presses his thumb close to (but 
not necessarily on) the target icon (more specifically, within 
the area of a “Parhi” box, explained later), and then makes a 
linear gesture in the direction that the target icon points. 
Icons can be packed close together, but are still easily 
distinguished as long as each icon is well-separated from 
the other icons that have the same gesture. We say that no 
two identical icons can share the same “Parhi box,” in 
reference to the previously-mentioned finding by Parhi et al. 
[13] that, to keep error rates low, targets should be at least 
9.2mm x 9.2mm square. Although the minimum-area shape 
of such a target is, in practice, not likely a box, we ignore 
this distinction here. 

An advantage of this approach is that it relies less on the 
user’s visual feedback loop. In traditional target selection, 
the user moves a cursor closer to the desired target, looks to 
see if the cursor lies within the target, and then repeats these 
steps until the cursor is properly positioned. This process 
can take several hundred milliseconds for small targets. 

With Escape, the user need only use their visual ability to 
recognize the position and appearance of the icon. After this, 
they need only tap their thumb in the 9.2 mm box around 
the icon position and make the gesture. Their visual system 
is used only to guide their thumb to the first point of contact, 
not to direct a cursor after the initial contact. Also, there is 
no need for the user to reorient to any other visual changes, 
such as the position of the Offset Cursor or the dynamically 
appearing inset of Shift. Explained in terms of user 
interaction techniques, Escape replaces the visually 
demanding and time-consuming target-selection task that 
follows the initial thumb press with a much coarser 
selection task followed by a crossing task [1] of making a 
sufficiently-long gesture. 

RELATED WORK 

Target Selection on a Touch Screen 
Much prior work has addressed how to improve selection 
on touch screens. Albinsson and Zhai [2] propose two 
techniques for very precise positioning. In Cross-Keys, the 
user adjusts the cursor position by tapping soft arrow keys 
displayed around the cursor. In Precision-Handle, the user 
controls a handle whose motions are scaled down to control 
the cursor more precisely. They show that although these 
techniques are faster than Offset Cursor for one-pixel 
targets, they are slower for eight-pixel (3.2 mm) targets.  

Benko et al. [3] investigate a precise pointing technique in 
the domain of two-handed interaction. The primary finger 
performs an initial selection while the secondary finger 
improves the precision by controlling an in-situ zoom or the 
properties of the cursor. Their techniques outperform earlier 
techniques, particularly in selection accuracy for objects 
smaller than eight pixels (4.8 mm). Despite the advantages, 
using two hands is impractical in many contexts involving 
small mobile devices.  

Another important issue for touch screens is occlusion. A 
target is usually occluded by the thumb or finger during 
selection. Earlier work that addresses occlusion is the 
aforementioned Offset Cursor technique (also called Take-
off) by Potter et al. [15]. This study uses desktop touch 
screens, so the results are for finger selection rather than 
thumb selection, however the techniques are generally 
applicable. In Offset Cursor, the cursor is placed above the 
actual position of the finger, and the object under the cursor 
is selected when the finger is released. Offset Cursor is less 
error-prone than alternative approaches, but its selection 
time is significantly longer than a technique that simply 
selects the first item that the user’s finger contacts. 
Although the reasons are not analyzed in detail, this appears 
to happen because Offset Cursor requires that the user 
spend time correcting her finger position before selecting 
the target object.  

Sears and Shneiderman [16] explore a stabilization 
technique that makes Offset Cursor significantly both faster 
and more accurate for targets less than four pixels wide. 
However, differences in the experimental setup make direct 

Figure 2. The Escape target selection technique. (a) The user 
presses her thumb near the desired target. (b) The user 
gestures in the direction indicated by the target. (c) The target 
is selected, despite several nearby distracters. 



 

comparison of these results to mobile device studies 
difficult. 

Mobile Touch Screen Target Selection 
Shift [17] addresses the disadvantages of Offset Cursor and 
adapts the technique to a mobile device. When using Offset 
Cursor, the user cannot know the precise position of the 
cursor until he presses the screen. Furthermore, always 
offsetting above the finger makes it impossible to select a 
target at the bottom of the screen. Shift copies the area 
occluded by the finger to an inset above, left, or right of the 
contact position. By not offsetting the cursor, and by 
keeping the selection point under the user’s finger, the user 
can “aim for the actual target.” A user study showed that 
Shift was more accurate then direct touch for targets 12 
pixels wide and less, and faster than Offset Cursor for 
targets 48 pixels and wider.  

However, despite these benefits, both Shift and Offset 
Cursor’s selection times are significantly slower than those 
of direct pointing for targets 12 pixels wide, and also appear 
to be slower for targets six pixels wide, although high error 
rates make significance unclear.  

Karlson et al.’s Thumbspace [9] presents a way to control a 
large mobile screen from a smaller input area using only a 
thumb. The input area shows a miniaturized version of the 
larger screen, but rather than naively magnifying the user’s 
motions, only the initial press is mapped to the original 
screen position. Pre-release motions then use the object 
pointing technique [6] to jump between selectable targets. 
Although ThumbSpace offers more accurate selection of 
small objects and reachability of distant objects, selection 
time is slower than direct pointing. 

BubbleCursor [5] also employs object-based selection, and 
improves upon the general idea by changing the cursor size 
dynamically. While BubbleCursor could be adapted for use 
in a mobile touch screen device, it does not address 
selection among overlapped objects, thus limiting the 
density of selectable targets that can be displayed. 

One-Handed Mobile Touch Screen Gesture Operation 
While gesture-based techniques have been heavily explored 
for both pen- and mouse-based interfaces [7, 14], they have 

not been explored as much for one-handed interaction using 
fingers or thumbs. Gesture-based interaction has been used 
for thumb-based navigation among applications on a 
handheld [11], and has been adopted commercially by the 
iPhone and HTC Touch. However, none of these systems 
have used strokes to assist target selection. 

PILOT STUDIES TO INFORM DESIGN 
As we considered how to implement Escape we recognized 
that design decisions about icon design, icon size, number 
of gestures, and type of gestures could significantly affect 
target density and usability measures such as selection time, 
error rate, and learnability. To determine good values for 
these parameters and improve Escape’s overall design, we 
conducted three pilot tests. 

First pilot study: Preliminary Icon Design 
Early in the design process we conducted a quick low-
fidelity pilot test to help us assess the intuitiveness and 
recognizability of four initial icon designs for Escape. The 
designs are shown in Figure 3. 

One preliminary design for Escape (Figure 3a) used 
gestures in four directions, and color, not shape. This design 
has an advantage in an ultra-dense cluster of icons: even 
one pixel of color may be enough to suggest an icon’s 
presence and how to select it. Only four gesture directions 
are used, and a one-pixel border around the screen edge is 
colored to teach users the proper color/direction association. 

The half-moon icon (Figure 3b) combines color and shape, 
and does not require the border. The pushpin (Figure 3c) 
resembles existing map icons. The arrow (Figure 3d) shows 
direction more clearly and contains a gradation, which we 
thought would improve recognition. We showed both 
monochrome and color versions of this icon to participants. 

Method 
Two people participated in this pilot test. Each was 
presented with a handheld device to which was taped color 
printouts of each of the five designs (see Figure 3e). The 
printouts showed both isolated and overlapping icons. We 
explained Escape and asked each participant to individually 
“select” 5-10 icons of each design. We then asked their 
impressions of the strengths and weaknesses of each design. 

Figure 3. Sample icon designs from the first pilot study. Designs were evaluated by showing study participants paper prototypes 
taped to the screen of a functional mobile device. 



 

Results 
Our pilot users preferred the colored arrows (Figure 3d), 
followed by the pushpin (Figure 3c), and the half-moon 
(Figure 3b). However, although the arrow design seemed 
clear and easy to learn, the clutter introduced by 
overlapping arrows was distracting. Color helped resolve 
the clutter, although it did not seem to help identify gesture 
direction. The pushpin icons were favored for their 
familiarity, but one participant suspected that they might 
require more visual attention to identify the gesture 
direction. The half moon icons were also easy to learn and 
easier to see in overlapping conditions, but their 
“bluntness” made them less recognizable when isolated. 

We formed two conclusions from these observations. First, 
shape and color should be used redundantly, since shape 
best indicates the direction of a gesture and color helps 
distinguish icons. (We revisit the issue of color’s value in 
the formal experiments.) Second, an icon should be both 
simple, to reduce clutter, and asymmetric, to distinguish 
itself.  

Second Pilot Study: Icon Size, Density and Gesture 
Type 
The goal of the second pilot study was to decide the final 
icon design. Based on the experience from our first pilot 
study, we devised a new “beak” design that combined the 
best features of the colored squares, half-moons, and arrows 
(Figure 4a). We also retained the push-pin icon (Figure 4b) 
for its intuitiveness.  

In selecting the final icon design, we also considered icon 
size. Our goal was to find icons large enough to see and 
recognize, but small enough to allow a large number of 
targets on the screen at one time. To explore this, we 
constructed 20 frames with either 2, 4, 8, 16, or 24 icons per 
Parhi box. Icons were either 8, 12, 16, or 24 pixels wide. 

However, a single Parhi box can only support as many 
targets as there are distinct gestures. Adding more straight-
line gestures makes more targets available per unit area, but 
also increases gesture error rates, as shown by studies of pie 

menus [12]. To explore one alternative, we constructed a 
two-level gesture design (Figure 4c). To select such an icon, 
the user would first move in the direction of the top beak, 
and then in the direction of the bottom beak. 

Method 
Eight new participants were presented with color printouts 
taped to a device as in the first pilot study. Each participant 
was asked which design they preferred. To determine 
whether the icons were recognizable, we asked participants 
to count the number of icons that they could easily see. 

Results 
The participants found that the single-level beak icon was 
more distinguishable than the pushpin icon. The two-level 
beak icons were difficult or impossible to recognize when 
the number of the icons in a Parhi box was more than eight. 
This led us to decide not to pursue the two-level design 
further, and to choose the basic beak icon. 

In assessing density, participants found the smallest beak 
icons (8 pixels wide) in the densest box (24 icons) to be 
both countable and identifiable. Also countable were 12-
pixel beak icons packed 16 to a box. Because such small 
icons supported the greatest target density and seemed 
feasible for Escape, we focused our efforts on smaller-sized 
icons in later studies. 

Third Pilot Study: Gesture-to-Icon Distance Metric 
Our third pilot study investigated two approaches to 
associating gestures with targets. Our first design matched 
the gesture with the icon whose beak direction matched the 
gesture direction and whose center lay nearest to the 
gesture’s start point. The second design matched a gesture 
with an icon based on the gesture’s midpoint. (Figure 5). 
This latter technique is similar to crossing-based interaction 
[1] and gives a user more freedom in her gesture starting 
point, because she can compensate by extending or 
truncating her gesture. 

We ran a pilot test with two users, this time with the 
operational prototype described in the next section. Our 
results did not show a noticeable improvement in 
performance or error rate, and appeared not to be 

Figure 4. The icon designs of the second pilot study. (a) A beak 
icon in which a beak and a color represent the direction of a
gesture; (b) A pushpin icon; (c) A two-beak icon. The two 
beaks of each two-beak icon represent a multi-level gesture 
(e. g., going downward and then going leftward). 

 

Figure 5. Determination of the gesture location. (a) The initial 
contact point determines the location of the gesture. (b) An 
alternative in which the gesture midpoint determines the 
gesture location. 



 

immediately intuitive, so we stuck with the original 
approach based on gesture start point. 

IMPLEMENTATION 
The Escape prototype was implemented as a C# Windows 
Mobile application. It used the 8-directional beak icons 
shown in Figure 4a. 

For comparison, we reimplemented Shift [17] as an 
alternative selection technique. We used the same 
escalation time for each target size (0, 5, 39, and 240 
milliseconds for 6, 12, 18, and 24 pixel targets, 
respectively). The correction vector was tuned and fixed 
before the experiment. For the dynamic low pass filter, we 
found that a cut-off frequency of 3 and 14 Hz interpolated 
between 18 and 48 mm/sec worked best for our device. 

Validating our implementation of Shift was complicated by 
differences in experimental conditions. The details are 
covered in the discussion section of Experiment 1. 

EXPERIMENT 1: COMPARISON WITH SHIFT 

Procedure 
Before starting each block of tasks, participants performed 
a practice set that used the same tasks as the test session. 
The participants could continue to practice until they were 
comfortable. Participants were allowed to take a break 
between blocks. The entire experiment took between 30 and 
60 minutes, depending on the participant’s performance. 

The task, shown in Figure 6, was designed to estimate the 
time to select a target that the user had already identified 
from a crowded field of other targets. In each task, a 
crosshair and large pink start button appeared on the screen. 
The distance between the crosshair and the center of the 
start button was 98 pixels. The participant tapped on the 
start button, and the target appeared, surrounded by seven 
distracter targets. Two distracter targets were positioned to 
meet the Exposure variable (explained later), and the others 
were located randomly within the Parhi box as long as they 
did not overlap the target. Times were measured between 
the tap of the start button and the selection of a target.  

In both conditions, targets turned yellow when selected. 
The Escape condition also provided a legend to match icon 
color with gesture direction.  

Participants identified the correct target to select by its 
position in the exact center of the screen, where the 
crosshair had been. Additionally, for Shift, the target was 
red while the distracters were blue. For Escape, the target 
had a light blue outline. These clues minimized the amount 
of time participants needed to determine the right target to 
select (an artifact of our experimental setup), while 
accounting for the time spent in thumb movement as well as 
icon identification (realistic time costs that the experiment 
was designed to measure).  

Independent Variables 
The independent variables were Technique (Shift or 
Escape); TargetSize (the size of the target: 6, 12, 18, or 24 
pixels), and Exposure (the fraction of the target that was 
visible: 0.25, 0.5, 0.75, or 1). When the target was partially 
occluded in the Escape condition, the beak was always 
exposed. We found that icon arrangement algorithms 
(described later in this paper) allow icons to be chosen in 
such a way to satisfy this assumption for most target 
arrangements. (We investigated the effects of beak 
occlusion in Experiment 2.) Finally, we studied thumbnail 
use (not thumbpad use) because of the low sensitivity of the 
touch screen. 

Eight different Directions were used for Escape; for Shift, 
the condition was simply repeated. Technique was 
counterbalanced, and the order of Direction was 
randomized. Eight blocks were used, four per technique, 
with each combination of TargetSize and Exposure 
presented twice in each block. Thus, there were 2 
(Technique) * 4 (TargetSize) * 4 (Exposure) * 8 (Direction) 
= 256 trials per participant. 

Hypotheses 
(H1) Escape would be faster than Shift, and less affected by 
target size.  

(H2) Shift would have fewer errors on smaller targets and 
more occluded targets, since the icon’s gesture would be 
difficult to determine using Escape. 

(H3) Exposure would influence the performance of both 
techniques, but in different ways. Shift’s performance 
would be affected by the smaller target size. Escape’s 
performance would be affected by the increasing difficulty 
of recognizing the icon. 

Apparatus 
The experiment was conducted on a T-Mobile Wing, which 
has a 41 x 54 mm, 240 x 320 pixel display. Its effective 
resolution is 5.9 pixel/mm. 

Participants 
Twelve people (nine male and three female) from our 
institution participated. We recruited only right-handed 
participants to simplify the study. All participants had some 
experience with a touch screen mobile device. Each 
participant was given a $20 gift card. 

Figure 6. The experimental task. (a) The start button and the 
crosshair to indicate the target position; (b) The target and 
distracters; (c) Visual feedback during the selection. 



 

EXPERIMENT 1 RESULTS 

Selection Time 
Figure 7 shows the mean performance time by Technique, 
TargetSize, and Exposure. We performed a within-subjects 
analysis of variance (ANOVA) for Technique X TargetSize 
X Exposure, and a main effect was found for each: 
Technique (F1,3070=325.12, p<0.001), TargetSize (F3, 

3068=166.38, p<0.001), and Exposure (F3,3068=33.59, 
p<0.001). The significant interactions were Technique X 
TargetSize (F7,3076=10.5, p<0.001), TargetSize X Exposure 
(F15,3069=2.81, p<0.01), and Technique X TargetSize X 
Exposure (F31, 3053=2.44, p<0.01). Tukey’s post-hoc pairwise 
comparison showed that Escape was significantly faster 
than Shift in all TargetSizes. 

Error Rate 
Figure 8 shows the mean error rate. An ANOVA test for 
Technique X TargetSize X Exposure showed a main effect 
for TargetSize (F3,1532=65.62, p<0.001), and Exposure 
(F3,1532=29.72, p<0.001), but not Technique. The significant 
interactions were TargetSize X Exposure (F15,1520=4.39, 
p<0.001) and Technique X TargetSize X Exposure 
(F31,1504=4.39, p<0.001).  

EXPERIMENT 1 DISCUSSION  
The results support hypothesis H1. Figure 7 shows that 
Shift’s task time increases as the exposed target size 
decreases, as would be expected from Fitts’ Law [4]. 
Escape’s task time also increases, however at a different 
rate. This effect arises because even as target icons become 
harder to identify, the physical target size remains one Parhi 
box. The effect on performance is shallower than Shift’s up 
to 50% occlusion of 6-pixel icons, where both task time and 
error rates jump because the icons are hard to see.  

Our results do not support H2; we did not find a significant 
difference between Shift and Escape’s error rate. In this 
regard, Shift performed better than we expected. 

Our results support H3 partly. Shift’s performance was 
affected by Exposure because the effective target size 
shrinks. In Escape, Exposure influences the performance 
more when TargetSize is smaller. We look into this effect 
more deeply in Experiment 2. 

Although Escape’s task time outperformed our 
reimplementation of Shift in this study, Escape’s 
performance is only marginally better than the original 
published results [17] for targets 12 pixels or less, and is 
somewhat worse for targets 18 pixels or greater. However, 
the original results were for finger and fingernail use. To 
better establish the differences between the techniques, and 
to validate our implementation of Shift, we reran 
Experiment 1 with four participants for only the Shift 
condition, and instructed them to use the fingernails of their 
index finger. In our implementation, the actual target sizes 
were 25% smaller than those in [17]. The target distance in 
our device was 17.6 mm, compared to 28.8 mm in [17]. 
Therefore, we decided to compare our implementation 
against the implementation in [17] based on a Fitts’ Law 
prediction for the time-to-first press for a target 28.8 mm 
away, given our original data for a target 17.6 mm away. 
Figure 9 shows the comparison of the two Shift techniques 
with the estimate of what our results would be for the 
further target. For this task, there is a close agreement 
between our implementation of Shift and the original results. 
This leads us to conclude that the slower performance of 
Shift in Experiment 1 relative to the published results 
primarily reflects the difference in using the thumbnail 
instead of the fingernail.  

EXPERIMENT 2: OCCLUSION, COLOR, AND DIRECTION 
We conducted a second study to explore variations on the 
basic Escape idea. One question was the extent to which 
color helped identify target direction under different 
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occlusion conditions. Although our pilot study results had 
suggested that direction-indicating colors improved 
performance, some applications might prefer to use color 
for other purposes, so we wanted to quantify the benefit. 
Another question was how occlusion of the beak affected 
performance differently from occlusion of the body. A third 
question was how error rates varied with gesture direction. 
Because of human hand physiology, it seemed that gestures 
were easier to make in some directions than in others.  

Independent Variables 
The independent variables in this experiment were 
TargetSize (6, 9, and 12 pixels), Exposure (0.25, 0.5, 0.75, 
and 1), Direction (8 directions); Color (whether icons are 
monotone (light gray) or colored by gesture direction), and 
BeakOcclusion (whether the occluding object comes from 
the beak direction or base direction). We narrowed the 
TargetSize range because Experiment 1 showed little 
difference for targets more than 12-pixels wide. The 
experiment used a total of 3 (TargetSize) * 4 (Exposure) * 8 
(Direction) * 2 (Color) * 2 (BeakOcclusion) = 384 trials per 
participant. 

Color and BeakOcclusion were kept constant within blocks 
and counterbalanced. The other variables were presented 
randomly within a session. The apparatus, tasks, stimuli and 
procedures were the same as in Experiment 1. 

Hypotheses 
(H4) Color would improve performance time and error rate.  

(H5) BeakOcclusion would increase task time and error rate 
since it would be harder to recognize the gesture indicated 
by the target icon. 

(H6) Error rates would vary with Direction.  

Participants 
Eight right handed people (six male and two female) 
participated in this experiment. As in Experiment 1, all 

participants had some experience with a touch screen 
mobile device. Each was compensated with a $20 gift card.  

EXPERIMENT 2 RESULTS 

Selection Time 
Within-subjects ANOVA showed a main effect for all 
variables: TargetSize (F2,3069=56.91, p<0.001), Exposure 
(F3,3068=37.42, p<0.001), BeakOcclusion (F1,3070=88.06, 
p<0.001), and Color (F1,3070=17.32, p<0.001). Significant 
interactions were found for Exposure X BeakOcclusion 
(F7,3064=7.44, p<0.001) and TargetSize X BeakOcclusion X 
Color (F11,3060=3.66, p<0.05).  

Tukey’s post-hoc pairwise comparison showed significant 
differences in BeakOcclusion in all Exposures except fully 
exposed. Furthermore, in the case of no beak occlusion, 
there was no significant difference in performance among 
Exposures greater than 0.25 (see Figure 10). These results 
indicate the importance of making the beak visible. 

Surprisingly, one-colored icon selection was as fast as or 
faster than eight-colored icon selection. Figure 11 shows 
the mean performance time by TargetSize, BeakOcclusion, 
and Color. No significant differences for color were found, 
except for 6-pixel targets with no BeakOcclusion, in which 
case one-colored icons were faster. 

Error Rate 
For TargetSize and Exposure, error rates showed a pattern 
similar to performance—less Exposure or a smaller 
TargetSize was more error-prone. Somewhat surprisingly, 
no significant differences were found in Direction, although 
there was a trend with gestures up and to the left causing 
more errors (Figure 12). An ANOVA test on error rate 
aggregated across Direction for TargetSize X Exposure X 
Color X BeakOcclusion found main effects in TargetSize 
(F3,380=27.93, p<0.001), Exposure (F3,380=25.04, p<0.001), 
and BeakOcclusion (F1,382=30.74, p<0.001). The significant 
interactions were TargetSize X Exposure (F3,380=7.17, 
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Figure 9. Performance comparison between our 
reimplementation of Shift and the results reported by Shift 
[15] for Experiment 1 using fingernails and adjusted for 
different target distances. 
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Figure 10. Performance as a function of Exposure, averaged 
over TargetSize in Experiment 2, showing the differences in 
BeakOcclusion. When the beak is exposed, performance only 
degrades if 25% or less of the icon is visible. 



 

p<0.001), and TargetSize X Color X BeakOcclusion 
(F3,380=4.23, p<0.01). 

EXPERIMENT 2 DISCUSSION 
The effects of color surprised us; our results did not support 
H4. We had expected color to help performance, not 
degrade it. Post-experimental interviews revealed that 
participants did find the colors distracting and that the 
colors were not discernable in small targets. 

Our results support H5. Most participants said that they 
used beak shape rather than color to determine gesture 
direction; the results agreed with the participants’ 
statements. This confirmed our belief that Escape should 
deliberately arrange icons to avoid beak occlusion. 

Although no significant effect of Direction was found, 
some participants did dislike some directions (NW, W, and 
SW) because they involved stretching the thumb, whereas 
other participants disliked other directions (S and SE) 
because they involved contracting the thumb. This finding 
implies that Escape might offer a user-definable parameter 
to favor certain gesture directions over others. 

ICON ARRANGEMENT 
We now describe an algorithm to assign icons to target 
positions. The algorithm’s primary task is to find an 
assignment that allows icons to be well-separated from 
other icons with the same gesture. Additionally, the system 
should minimize icon overlap, especially of the beak. This 
problem is similar to graph coloring [8], which is known to 
be NP-complete even for planar graphs. Thus, there is no 
known efficient optimal algorithm. Here we describe a 
heuristic algorithm that appears to work well in practice. 

Beak occlusion occurs when targets are located near each 
other. To minimize the effects of closely spaced icons, 

Escape attaches the tip of the icon’s beak to the target 
location. The icon body may then be put in any of eight 
possible locations around the target. This flexibility helps 
avoid many occlusions that would occur if the target 
location were instead attached to the icon center. 

Our algorithm represents each target as a node in a graph. 
Each node is connected by a link to all other nodes in its 
neighborhood, defined as a 9.2 mm radius circle around the 
target. Each node also has eight subnodes representing the 
eight possible icons, and each subnode has a weight 
representing the likelihood that the corresponding choice of 
the icon will cause an occlusion or a violation of the spatial 
constraint. The algorithm calculates the initial weight of 
each subnode based only on occlusions. Subnodes close 
enough to other nodes are given higher weights because 
there is less freedom to place an icon there.  

After the initial weight assignment, the algorithm first finds 
the node that has the most other nodes in its neighborhood, 
and then finds the subnode of that node with the least 
weight. Then the weights at the neighborhood nodes are 
updated by adding a large weight to their subnodes that 
represent the same kind of icon. The algorithm proceeds in 
this greedy manner, at each step choosing a least-weight 
subnode for a node with the largest number of the 
neighborhood nodes. The calculation stops when it has 
assigned icons for all items.  

To test the algorithm’s performance, we ran a simulation 
that varied the number of onscreen targets from 10 to 100. 
1000 screens of icons were tested for each number of 
targets. The simulator chose target locations randomly, but 
avoided a 20 pixel margin around the edges of the screen. 
We considered a screen a success when the algorithm could 
assign all icons to targets without violating the spatial 
constraint. Figure 13 illustrates how our algorithm improves 
upon a random icon assignment. 
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Figure 12. The error rate for Direction, averaged over all other 
independent variables in Experiment 2. Error rates are higher 
than Figure 8 because target sizes are smaller. 
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For a high rate of success, the algorithm can only handle 
five icons per neighborhood, which works out to a density 
of 2.3 icons per square centimeter. Note that this is for a 
high success rate over an average density over 1000 screens, 
some of which have concentrated regions with much higher 
local neighborhood densities. The algorithm calculates the 
arrangement of 100 items in around three seconds on a 
Windows Mobile emulator.  

Note that icon assignments can be precomputed offline in 
some applications. Moreover, Escape can also be useful for 
manually-designed user interfaces, in which case the 
maximum density can be predictably achieved. 

LIMITATIONS OF ESCAPE 
The performance benefits of Escape do not come without 
drawbacks. Many applications use selections in background 
spaces to perform operations like map drags and generic 
pop-up menus. Because Escape expands the selection zone 
around a target, there is less open space in which to perform 
a target-free selection. In some cases, this can be overcome 
by using a more complex gesture (e.g., by making a multi-
segment gesture), but it is more work for the user. 

Also, because Escape requires that icons indicate gesture, 
the maximum number of onscreen selectable targets is less 
than that of Offset Cursor and Shift, which can handle 
selection of individual pixel elements. This excludes 
applications like drawing programs, where pixel accuracy is 
critical.  

Finally, gestures cannot go beyond a screen edge, so the set 
of icons allowed near the edge of the screen is more limited 
than the set allowed at the center. This reduces target 
density near the screen edge.  

IMPROVEMENTS TO ESCAPE 
Our user study also inspired additional variations that 
would be useful for a practical deployment. In addition to 
the design implications above, there are several other 
improvements that could be made to Escape. 

Enhancement to Thumb Gestures 
Icon appearance is not the only possible cue to suggest a 
gesture. In some cases, relative icon positions may be 
sufficient. For example, dialog boxes containing two 
adjacent buttons might use a rightward gesture to select the 
right button, and a leftward gesture to select the left. 

In our experiments, many participants desired a mechanism 
to cancel an in-progress gesture. Escape could interpret 
returning to the gesture starting point as a cancellation 
operation.  

Although the results from the second pilot study 
discouraged us from two-level gestures because of our icon 
design, there are other gesture mechanisms, such as multi-
length gestures or zone or polygon gestures [18] that might 
be easier to use. While these gestures are easily performed 
and easily distinguished, it is not obvious what icon designs 
would suggest these gestures clearly in high-density 
situations.  

Arrangement-Specific Selection Zones 
Greater densities and more layout flexibility can be 
achieved if the selection region for an icon is not centered 
on it. Two immediately adjacent icons, indicating identical 
gestures, can still be easily distinguished if it is possible to 
draw a Parhi box around each as long as there are no 
additional icons with the same gesture inside those Parhi 
boxes (see Figure 14). This works as long as all nearby 
identical icons are visible, so the user knows on which side 
of an icon to begin a gesture. 

A variant of this idea is to expand a target’s initial selection 
zone beyond a Parhi box to its cell in the Voronoi diagram 
constructed from all targets. This approach has been shown 
to improve selection performance in traditional target 
selection [5]. However, it is important to limit the distance 
at which a target could be selected, both to avoid confusion 
when targets are far from the contact point, and to allow 
background regions to support non-target selecting 
commands. 

Figure 14. Two icons with similar gesture directions can be 
near each other if 9.2mm Parhi boxes can be drawn around 
each such that they contain no other similar icons. The four 
upward-pointing icons in (a) are well-separated; the three 
upward-pointing icons in (b) are not. 

Figure 13. By carefully assigning icons, overlaps and 
unnecessary icon proximities can be avoided. (a) Random 
assignment; (b) Our overlap-avoidance algorithm. The circled 
region shows a case where the algorithm avoids placing 
identical icons together, and the squared region shows how the 
algorithm avoids icon overlap. 



 

Generalized Distance 
The method used in this paper to match gestures and targets 
first limited the search space to icons within a Parhi Box, 
and then found the icon with the most closely matching 
gesture. An alternative is to frame the problem as finding 
the closest icon represented by an (xi,yi,θi) point in a three-
dimensional space to the (xg,yg,θg) point given by the user’s 
gesture. This approach would be more forgiving of 
positioning errors and might reduce overall error rate. 

Combining Escape and Shift 
Escape and Shift could be combined to make a target 
selection technique that would likely perform better than 
Escape for icons six pixels wide and smaller. Dense target 
clusters would bring up the Shift inset, after which the user 
could more easily see the icons in that space and perform 
the disambiguating gesture. The inset might not only 
magnify the area, but also better separate dense icon groups 
to make it easier to identify separate icons, and draw icons 
with finer resolution than is possible at the base resolution.  

CONCLUSIONS  
We have presented a thumb-based touch screen target-
selection technique called Escape. In Escape, the user 
establishes an initial approximate position of interest, 
followed by a disambiguating gesture that is cued by the 
target to be selected. A controlled study showed that Escape 
is significantly faster than Shift while roughly matching its 
accuracy. Although direct touch selection will likely be 
faster than Escape for larger icons, poor accuracy rates 
make Escape a preferred solution for smaller icons.  
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