

Escape: A Target Selection Technique
Using Visually-cued Gestures

Koji Yatani1, Kurt Partridge2, Marshall Bern2, and Mark W. Newman3

1Department of Computer Science
University of Toronto
www.dgp.toronto.edu
koji@dgp.toronto.edu

2Computing Sciences Laboratory
Palo Alto Research Center, Inc.

www.parc.com
kurt@parc.com, bern@parc.com

3School of Information
University of Michigan

www.si.umich.edu
mnewman@umich.edu

ABSTRACT

Many mobile devices have touch-sensitive screens that
people interact with using fingers or thumbs. However,
such interaction is difficult because targets become
occluded, and because fingers and thumbs have low input
resolution. Recent research has addressed occlusion through
visual techniques. However, the poor resolution of finger
and thumb selection still limits selection speed. In this
paper, we address the selection speed problem through a
new target selection technique called Escape. In Escape,
targets are selected by gestures cued by icon position and
appearance. A user study shows that for targets six to
twelve pixels wide, Escape performs at a similar error rate
and at least 30% faster than Shift, an alternative technique,
on a similar task. We evaluate Escape’s performance in
different circumstances, including different icon sizes, icon
overlap, use of color, and gesture direction. We also
describe an algorithm that assigns icons to targets, thereby
improving Escape’s performance.

Author Keywords
Target selection, finger gesture, touch screen, mobile device

ACM Classification Keywords
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – Input devices and strategies, Interaction styles.

INTRODUCTION
Everyone wants a mobile device to be small—until they
start to use it. Tiny screens are hard to see, and tiny user
interfaces are hard to control.

Many mobile devices have a screen that a user can control
by touch. Although these devices can also be controlled by
a stylus, many people prefer to use their thumbs [10].

A recent research study of thumb use recommended that
on-screen targets be no smaller than 9.2mm wide [13].
Below this size, performance begins to degrade when the
user tries to select a target with a thumb since thumb-
presses are simply too large and too variable to give an
accurate selection point. Although users can accurately
select smaller targets by another method, such as by using a
stylus, they lose the ease of thumb-based interaction.
Furthermore, it is often not practical to make a target large
enough for thumb-based interaction because larger targets
occupy more space, leaving less room on a small display
for other targets and information.

Although users cannot accurately select targets smaller than
9.2mm with direct thumb touch, techniques such as Offset
Cursor [15] and the more recent Shift [17] improve
selection accuracy by helping users refine their initial
selection position. Originally designed for fingertip
operation, these techniques overcome the general problem
of digit occlusion by offsetting the cursor from the selection
point (Offset Cursor), or by displaying an inset of the
selection region (Shift).

While these approaches are more accurate for smaller
targets, they are also slower. When selecting a 12 pixel (2.6
mm) target with a fingertip, participants using Shift made
only about 20% as many errors as normal pointing, but took
70% longer [17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2008, April 5–10, 2008, Florence, Italy.
Copyright 2008 ACM 978-1-60558-011-1/08/04…$5.00.

Figure 1. (a) It is difficult to select a target when it is
surrounded by other selectable objects. (b) The icons in Escape
indicate finger gestures that disambiguate the selection. (c) A
thumb tap followed by a gesture (without the release of the
thumb) enables a user to select the target quickly and
correctly even when it is small or occluded by other objects.

In this paper, we present “Escape,” an accurate and fast
selection technique for small targets. Unlike conventional
selection, in which the contact point alone determines the
target, in Escape the contact point need only lie close to the
target. If the point can be unambiguously associated with a
single target, the user can then lift their finger or thumb and
the selection is made. However, if multiple targets are near
the contact point, the user instead gestures in a direction
suggested by the icon, thus disambiguating the selection
(see Figure 1). In our experiments, for targets between six
and twelve pixels wide, target selection using Escape is on
average at least 30% faster than using Shift, without a
significant difference in error rate.

Escape is presented in the context of thumb-based one-
handed target selection on a map application for a mobile
touch screen. However, Escape could also be useful in other
circumstances such as two-handed operation, general user
interface widgets, and non-mobile devices.

ESCAPE INTERACTION
Figure 2 shows in more detail how the Escape selection
technique works. The user presses his thumb close to (but
not necessarily on) the target icon (more specifically, within
the area of a “Parhi” box, explained later), and then makes a
linear gesture in the direction that the target icon points.
Icons can be packed close together, but are still easily
distinguished as long as each icon is well-separated from
the other icons that have the same gesture. We say that no
two identical icons can share the same “Parhi box,” in
reference to the previously-mentioned finding by Parhi et al.
[13] that, to keep error rates low, targets should be at least
9.2mm x 9.2mm square. Although the minimum-area shape
of such a target is, in practice, not likely a box, we ignore
this distinction here.

An advantage of this approach is that it relies less on the
user’s visual feedback loop. In traditional target selection,
the user moves a cursor closer to the desired target, looks to
see if the cursor lies within the target, and then repeats these
steps until the cursor is properly positioned. This process
can take several hundred milliseconds for small targets.

With Escape, the user need only use their visual ability to
recognize the position and appearance of the icon. After this,
they need only tap their thumb in the 9.2 mm box around
the icon position and make the gesture. Their visual system
is used only to guide their thumb to the first point of contact,
not to direct a cursor after the initial contact. Also, there is
no need for the user to reorient to any other visual changes,
such as the position of the Offset Cursor or the dynamically
appearing inset of Shift. Explained in terms of user
interaction techniques, Escape replaces the visually
demanding and time-consuming target-selection task that
follows the initial thumb press with a much coarser
selection task followed by a crossing task [1] of making a
sufficiently-long gesture.

RELATED WORK

Target Selection on a Touch Screen
Much prior work has addressed how to improve selection
on touch screens. Albinsson and Zhai [2] propose two
techniques for very precise positioning. In Cross-Keys, the
user adjusts the cursor position by tapping soft arrow keys
displayed around the cursor. In Precision-Handle, the user
controls a handle whose motions are scaled down to control
the cursor more precisely. They show that although these
techniques are faster than Offset Cursor for one-pixel
targets, they are slower for eight-pixel (3.2 mm) targets.

Benko et al. [3] investigate a precise pointing technique in
the domain of two-handed interaction. The primary finger
performs an initial selection while the secondary finger
improves the precision by controlling an in-situ zoom or the
properties of the cursor. Their techniques outperform earlier
techniques, particularly in selection accuracy for objects
smaller than eight pixels (4.8 mm). Despite the advantages,
using two hands is impractical in many contexts involving
small mobile devices.

Another important issue for touch screens is occlusion. A
target is usually occluded by the thumb or finger during
selection. Earlier work that addresses occlusion is the
aforementioned Offset Cursor technique (also called Take-
off) by Potter et al. [15]. This study uses desktop touch
screens, so the results are for finger selection rather than
thumb selection, however the techniques are generally
applicable. In Offset Cursor, the cursor is placed above the
actual position of the finger, and the object under the cursor
is selected when the finger is released. Offset Cursor is less
error-prone than alternative approaches, but its selection
time is significantly longer than a technique that simply
selects the first item that the user’s finger contacts.
Although the reasons are not analyzed in detail, this appears
to happen because Offset Cursor requires that the user
spend time correcting her finger position before selecting
the target object.

Sears and Shneiderman [16] explore a stabilization
technique that makes Offset Cursor significantly both faster
and more accurate for targets less than four pixels wide.
However, differences in the experimental setup make direct

Figure 2. The Escape target selection technique. (a) The user
presses her thumb near the desired target. (b) The user
gestures in the direction indicated by the target. (c) The target
is selected, despite several nearby distracters.

comparison of these results to mobile device studies
difficult.

Mobile Touch Screen Target Selection
Shift [17] addresses the disadvantages of Offset Cursor and
adapts the technique to a mobile device. When using Offset
Cursor, the user cannot know the precise position of the
cursor until he presses the screen. Furthermore, always
offsetting above the finger makes it impossible to select a
target at the bottom of the screen. Shift copies the area
occluded by the finger to an inset above, left, or right of the
contact position. By not offsetting the cursor, and by
keeping the selection point under the user’s finger, the user
can “aim for the actual target.” A user study showed that
Shift was more accurate then direct touch for targets 12
pixels wide and less, and faster than Offset Cursor for
targets 48 pixels and wider.

However, despite these benefits, both Shift and Offset
Cursor’s selection times are significantly slower than those
of direct pointing for targets 12 pixels wide, and also appear
to be slower for targets six pixels wide, although high error
rates make significance unclear.

Karlson et al.’s Thumbspace [9] presents a way to control a
large mobile screen from a smaller input area using only a
thumb. The input area shows a miniaturized version of the
larger screen, but rather than naively magnifying the user’s
motions, only the initial press is mapped to the original
screen position. Pre-release motions then use the object
pointing technique [6] to jump between selectable targets.
Although ThumbSpace offers more accurate selection of
small objects and reachability of distant objects, selection
time is slower than direct pointing.

BubbleCursor [5] also employs object-based selection, and
improves upon the general idea by changing the cursor size
dynamically. While BubbleCursor could be adapted for use
in a mobile touch screen device, it does not address
selection among overlapped objects, thus limiting the
density of selectable targets that can be displayed.

One-Handed Mobile Touch Screen Gesture Operation
While gesture-based techniques have been heavily explored
for both pen- and mouse-based interfaces [7, 14], they have

not been explored as much for one-handed interaction using
fingers or thumbs. Gesture-based interaction has been used
for thumb-based navigation among applications on a
handheld [11], and has been adopted commercially by the
iPhone and HTC Touch. However, none of these systems
have used strokes to assist target selection.

PILOT STUDIES TO INFORM DESIGN
As we considered how to implement Escape we recognized
that design decisions about icon design, icon size, number
of gestures, and type of gestures could significantly affect
target density and usability measures such as selection time,
error rate, and learnability. To determine good values for
these parameters and improve Escape’s overall design, we
conducted three pilot tests.

First pilot study: Preliminary Icon Design
Early in the design process we conducted a quick low-
fidelity pilot test to help us assess the intuitiveness and
recognizability of four initial icon designs for Escape. The
designs are shown in Figure 3.

One preliminary design for Escape (Figure 3a) used
gestures in four directions, and color, not shape. This design
has an advantage in an ultra-dense cluster of icons: even
one pixel of color may be enough to suggest an icon’s
presence and how to select it. Only four gesture directions
are used, and a one-pixel border around the screen edge is
colored to teach users the proper color/direction association.

The half-moon icon (Figure 3b) combines color and shape,
and does not require the border. The pushpin (Figure 3c)
resembles existing map icons. The arrow (Figure 3d) shows
direction more clearly and contains a gradation, which we
thought would improve recognition. We showed both
monochrome and color versions of this icon to participants.

Method
Two people participated in this pilot test. Each was
presented with a handheld device to which was taped color
printouts of each of the five designs (see Figure 3e). The
printouts showed both isolated and overlapping icons. We
explained Escape and asked each participant to individually
“select” 5-10 icons of each design. We then asked their
impressions of the strengths and weaknesses of each design.

Figure 3. Sample icon designs from the first pilot study. Designs were evaluated by showing study participants paper prototypes
taped to the screen of a functional mobile device.

Results
Our pilot users preferred the colored arrows (Figure 3d),
followed by the pushpin (Figure 3c), and the half-moon
(Figure 3b). However, although the arrow design seemed
clear and easy to learn, the clutter introduced by
overlapping arrows was distracting. Color helped resolve
the clutter, although it did not seem to help identify gesture
direction. The pushpin icons were favored for their
familiarity, but one participant suspected that they might
require more visual attention to identify the gesture
direction. The half moon icons were also easy to learn and
easier to see in overlapping conditions, but their
“bluntness” made them less recognizable when isolated.

We formed two conclusions from these observations. First,
shape and color should be used redundantly, since shape
best indicates the direction of a gesture and color helps
distinguish icons. (We revisit the issue of color’s value in
the formal experiments.) Second, an icon should be both
simple, to reduce clutter, and asymmetric, to distinguish
itself.

Second Pilot Study: Icon Size, Density and Gesture
Type
The goal of the second pilot study was to decide the final
icon design. Based on the experience from our first pilot
study, we devised a new “beak” design that combined the
best features of the colored squares, half-moons, and arrows
(Figure 4a). We also retained the push-pin icon (Figure 4b)
for its intuitiveness.

In selecting the final icon design, we also considered icon
size. Our goal was to find icons large enough to see and
recognize, but small enough to allow a large number of
targets on the screen at one time. To explore this, we
constructed 20 frames with either 2, 4, 8, 16, or 24 icons per
Parhi box. Icons were either 8, 12, 16, or 24 pixels wide.

However, a single Parhi box can only support as many
targets as there are distinct gestures. Adding more straight-
line gestures makes more targets available per unit area, but
also increases gesture error rates, as shown by studies of pie

menus [12]. To explore one alternative, we constructed a
two-level gesture design (Figure 4c). To select such an icon,
the user would first move in the direction of the top beak,
and then in the direction of the bottom beak.

Method
Eight new participants were presented with color printouts
taped to a device as in the first pilot study. Each participant
was asked which design they preferred. To determine
whether the icons were recognizable, we asked participants
to count the number of icons that they could easily see.

Results
The participants found that the single-level beak icon was
more distinguishable than the pushpin icon. The two-level
beak icons were difficult or impossible to recognize when
the number of the icons in a Parhi box was more than eight.
This led us to decide not to pursue the two-level design
further, and to choose the basic beak icon.

In assessing density, participants found the smallest beak
icons (8 pixels wide) in the densest box (24 icons) to be
both countable and identifiable. Also countable were 12-
pixel beak icons packed 16 to a box. Because such small
icons supported the greatest target density and seemed
feasible for Escape, we focused our efforts on smaller-sized
icons in later studies.

Third Pilot Study: Gesture-to-Icon Distance Metric
Our third pilot study investigated two approaches to
associating gestures with targets. Our first design matched
the gesture with the icon whose beak direction matched the
gesture direction and whose center lay nearest to the
gesture’s start point. The second design matched a gesture
with an icon based on the gesture’s midpoint. (Figure 5).
This latter technique is similar to crossing-based interaction
[1] and gives a user more freedom in her gesture starting
point, because she can compensate by extending or
truncating her gesture.

We ran a pilot test with two users, this time with the
operational prototype described in the next section. Our
results did not show a noticeable improvement in
performance or error rate, and appeared not to be

Figure 4. The icon designs of the second pilot study. (a) A beak
icon in which a beak and a color represent the direction of a
gesture; (b) A pushpin icon; (c) A two-beak icon. The two
beaks of each two-beak icon represent a multi-level gesture
(e. g., going downward and then going leftward).

Figure 5. Determination of the gesture location. (a) The initial
contact point determines the location of the gesture. (b) An
alternative in which the gesture midpoint determines the
gesture location.

immediately intuitive, so we stuck with the original
approach based on gesture start point.

IMPLEMENTATION
The Escape prototype was implemented as a C# Windows
Mobile application. It used the 8-directional beak icons
shown in Figure 4a.

For comparison, we reimplemented Shift [17] as an
alternative selection technique. We used the same
escalation time for each target size (0, 5, 39, and 240
milliseconds for 6, 12, 18, and 24 pixel targets,
respectively). The correction vector was tuned and fixed
before the experiment. For the dynamic low pass filter, we
found that a cut-off frequency of 3 and 14 Hz interpolated
between 18 and 48 mm/sec worked best for our device.

Validating our implementation of Shift was complicated by
differences in experimental conditions. The details are
covered in the discussion section of Experiment 1.

EXPERIMENT 1: COMPARISON WITH SHIFT

Procedure
Before starting each block of tasks, participants performed
a practice set that used the same tasks as the test session.
The participants could continue to practice until they were
comfortable. Participants were allowed to take a break
between blocks. The entire experiment took between 30 and
60 minutes, depending on the participant’s performance.

The task, shown in Figure 6, was designed to estimate the
time to select a target that the user had already identified
from a crowded field of other targets. In each task, a
crosshair and large pink start button appeared on the screen.
The distance between the crosshair and the center of the
start button was 98 pixels. The participant tapped on the
start button, and the target appeared, surrounded by seven
distracter targets. Two distracter targets were positioned to
meet the Exposure variable (explained later), and the others
were located randomly within the Parhi box as long as they
did not overlap the target. Times were measured between
the tap of the start button and the selection of a target.

In both conditions, targets turned yellow when selected.
The Escape condition also provided a legend to match icon
color with gesture direction.

Participants identified the correct target to select by its
position in the exact center of the screen, where the
crosshair had been. Additionally, for Shift, the target was
red while the distracters were blue. For Escape, the target
had a light blue outline. These clues minimized the amount
of time participants needed to determine the right target to
select (an artifact of our experimental setup), while
accounting for the time spent in thumb movement as well as
icon identification (realistic time costs that the experiment
was designed to measure).

Independent Variables
The independent variables were Technique (Shift or
Escape); TargetSize (the size of the target: 6, 12, 18, or 24
pixels), and Exposure (the fraction of the target that was
visible: 0.25, 0.5, 0.75, or 1). When the target was partially
occluded in the Escape condition, the beak was always
exposed. We found that icon arrangement algorithms
(described later in this paper) allow icons to be chosen in
such a way to satisfy this assumption for most target
arrangements. (We investigated the effects of beak
occlusion in Experiment 2.) Finally, we studied thumbnail
use (not thumbpad use) because of the low sensitivity of the
touch screen.

Eight different Directions were used for Escape; for Shift,
the condition was simply repeated. Technique was
counterbalanced, and the order of Direction was
randomized. Eight blocks were used, four per technique,
with each combination of TargetSize and Exposure
presented twice in each block. Thus, there were 2
(Technique) * 4 (TargetSize) * 4 (Exposure) * 8 (Direction)
= 256 trials per participant.

Hypotheses
(H1) Escape would be faster than Shift, and less affected by
target size.

(H2) Shift would have fewer errors on smaller targets and
more occluded targets, since the icon’s gesture would be
difficult to determine using Escape.

(H3) Exposure would influence the performance of both
techniques, but in different ways. Shift’s performance
would be affected by the smaller target size. Escape’s
performance would be affected by the increasing difficulty
of recognizing the icon.

Apparatus
The experiment was conducted on a T-Mobile Wing, which
has a 41 x 54 mm, 240 x 320 pixel display. Its effective
resolution is 5.9 pixel/mm.

Participants
Twelve people (nine male and three female) from our
institution participated. We recruited only right-handed
participants to simplify the study. All participants had some
experience with a touch screen mobile device. Each
participant was given a $20 gift card.

Figure 6. The experimental task. (a) The start button and the
crosshair to indicate the target position; (b) The target and
distracters; (c) Visual feedback during the selection.

EXPERIMENT 1 RESULTS

Selection Time
Figure 7 shows the mean performance time by Technique,
TargetSize, and Exposure. We performed a within-subjects
analysis of variance (ANOVA) for Technique X TargetSize
X Exposure, and a main effect was found for each:
Technique (F1,3070=325.12, p<0.001), TargetSize (F3,

3068=166.38, p<0.001), and Exposure (F3,3068=33.59,
p<0.001). The significant interactions were Technique X
TargetSize (F7,3076=10.5, p<0.001), TargetSize X Exposure
(F15,3069=2.81, p<0.01), and Technique X TargetSize X
Exposure (F31, 3053=2.44, p<0.01). Tukey’s post-hoc pairwise
comparison showed that Escape was significantly faster
than Shift in all TargetSizes.

Error Rate
Figure 8 shows the mean error rate. An ANOVA test for
Technique X TargetSize X Exposure showed a main effect
for TargetSize (F3,1532=65.62, p<0.001), and Exposure
(F3,1532=29.72, p<0.001), but not Technique. The significant
interactions were TargetSize X Exposure (F15,1520=4.39,
p<0.001) and Technique X TargetSize X Exposure
(F31,1504=4.39, p<0.001).

EXPERIMENT 1 DISCUSSION
The results support hypothesis H1. Figure 7 shows that
Shift’s task time increases as the exposed target size
decreases, as would be expected from Fitts’ Law [4].
Escape’s task time also increases, however at a different
rate. This effect arises because even as target icons become
harder to identify, the physical target size remains one Parhi
box. The effect on performance is shallower than Shift’s up
to 50% occlusion of 6-pixel icons, where both task time and
error rates jump because the icons are hard to see.

Our results do not support H2; we did not find a significant
difference between Shift and Escape’s error rate. In this
regard, Shift performed better than we expected.

Our results support H3 partly. Shift’s performance was
affected by Exposure because the effective target size
shrinks. In Escape, Exposure influences the performance
more when TargetSize is smaller. We look into this effect
more deeply in Experiment 2.

Although Escape’s task time outperformed our
reimplementation of Shift in this study, Escape’s
performance is only marginally better than the original
published results [17] for targets 12 pixels or less, and is
somewhat worse for targets 18 pixels or greater. However,
the original results were for finger and fingernail use. To
better establish the differences between the techniques, and
to validate our implementation of Shift, we reran
Experiment 1 with four participants for only the Shift
condition, and instructed them to use the fingernails of their
index finger. In our implementation, the actual target sizes
were 25% smaller than those in [17]. The target distance in
our device was 17.6 mm, compared to 28.8 mm in [17].
Therefore, we decided to compare our implementation
against the implementation in [17] based on a Fitts’ Law
prediction for the time-to-first press for a target 28.8 mm
away, given our original data for a target 17.6 mm away.
Figure 9 shows the comparison of the two Shift techniques
with the estimate of what our results would be for the
further target. For this task, there is a close agreement
between our implementation of Shift and the original results.
This leads us to conclude that the slower performance of
Shift in Experiment 1 relative to the published results
primarily reflects the difference in using the thumbnail
instead of the fingernail.

EXPERIMENT 2: OCCLUSION, COLOR, AND DIRECTION
We conducted a second study to explore variations on the
basic Escape idea. One question was the extent to which
color helped identify target direction under different

0

1000

2000

3000

4000

5000

6 12 18 24
TargetSize [px]

P
er

fo
rm

an
ce

 T
im

e
[m

se
c]

Escape / Exposure = 0.25
Escape / Exposure = 0.5
Escape / Exposure = 0.75
Escape / Exposure = 1
Shift / Exposure = 0.25
Shift / Exposure = 0.5
Shift / Exposure = 0.75
Shift / Exposure = 1

Figure 7. The mean performance time for Technique X
TargetSize X Exposure using thumbnails in Experiment 1.
Lines connect averages across all exposures for each technique.
Escape is significantly faster than Shift, although performance
degrades for heavily occluded, very small icons. In this and all
later charts, error bars represent 95% confidence intervals.

0

10

20

30

40

50

60

70

6 12 18 24
TargetSize [px]

E
rr

or
 R

at
e

[%
]

Escape / Exposure = 0.25
Escape / Exposure = 0.5
Escape / Exposure = 0.75
Escape / Exposure = 1
Shift / Exposure = 0.25
Shift / Exposure = 0.5
Shift / Exposure = 0.75
Shift / Exposure = 1

Figure 8. The mean error rate for Technique X TargetSize X
Exposure in Experiment 1. No significant difference for
technique was found in error rate.

occlusion conditions. Although our pilot study results had
suggested that direction-indicating colors improved
performance, some applications might prefer to use color
for other purposes, so we wanted to quantify the benefit.
Another question was how occlusion of the beak affected
performance differently from occlusion of the body. A third
question was how error rates varied with gesture direction.
Because of human hand physiology, it seemed that gestures
were easier to make in some directions than in others.

Independent Variables
The independent variables in this experiment were
TargetSize (6, 9, and 12 pixels), Exposure (0.25, 0.5, 0.75,
and 1), Direction (8 directions); Color (whether icons are
monotone (light gray) or colored by gesture direction), and
BeakOcclusion (whether the occluding object comes from
the beak direction or base direction). We narrowed the
TargetSize range because Experiment 1 showed little
difference for targets more than 12-pixels wide. The
experiment used a total of 3 (TargetSize) * 4 (Exposure) * 8
(Direction) * 2 (Color) * 2 (BeakOcclusion) = 384 trials per
participant.

Color and BeakOcclusion were kept constant within blocks
and counterbalanced. The other variables were presented
randomly within a session. The apparatus, tasks, stimuli and
procedures were the same as in Experiment 1.

Hypotheses
(H4) Color would improve performance time and error rate.

(H5) BeakOcclusion would increase task time and error rate
since it would be harder to recognize the gesture indicated
by the target icon.

(H6) Error rates would vary with Direction.

Participants
Eight right handed people (six male and two female)
participated in this experiment. As in Experiment 1, all

participants had some experience with a touch screen
mobile device. Each was compensated with a $20 gift card.

EXPERIMENT 2 RESULTS

Selection Time
Within-subjects ANOVA showed a main effect for all
variables: TargetSize (F2,3069=56.91, p<0.001), Exposure
(F3,3068=37.42, p<0.001), BeakOcclusion (F1,3070=88.06,
p<0.001), and Color (F1,3070=17.32, p<0.001). Significant
interactions were found for Exposure X BeakOcclusion
(F7,3064=7.44, p<0.001) and TargetSize X BeakOcclusion X
Color (F11,3060=3.66, p<0.05).

Tukey’s post-hoc pairwise comparison showed significant
differences in BeakOcclusion in all Exposures except fully
exposed. Furthermore, in the case of no beak occlusion,
there was no significant difference in performance among
Exposures greater than 0.25 (see Figure 10). These results
indicate the importance of making the beak visible.

Surprisingly, one-colored icon selection was as fast as or
faster than eight-colored icon selection. Figure 11 shows
the mean performance time by TargetSize, BeakOcclusion,
and Color. No significant differences for color were found,
except for 6-pixel targets with no BeakOcclusion, in which
case one-colored icons were faster.

Error Rate
For TargetSize and Exposure, error rates showed a pattern
similar to performance—less Exposure or a smaller
TargetSize was more error-prone. Somewhat surprisingly,
no significant differences were found in Direction, although
there was a trend with gestures up and to the left causing
more errors (Figure 12). An ANOVA test on error rate
aggregated across Direction for TargetSize X Exposure X
Color X BeakOcclusion found main effects in TargetSize
(F3,380=27.93, p<0.001), Exposure (F3,380=25.04, p<0.001),
and BeakOcclusion (F1,382=30.74, p<0.001). The significant
interactions were TargetSize X Exposure (F3,380=7.17,

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7

target size [mm]

P
er

fo
rm

an
ce

 T
im

e
[m

se
c] Shift (Our

implementation)
Shift (reported in Vogel
et al.'s paper)

Figure 9. Performance comparison between our
reimplementation of Shift and the results reported by Shift
[15] for Experiment 1 using fingernails and adjusted for
different target distances.

0

500

1000

1500

2000

2500

3000

0.25 0.5 0.75 1
Exposure

Pe
rfo

rm
an

ce
 T

im
e

[m
se

c] BeakOcclusion=no
BeakOcclusion=yes

Figure 10. Performance as a function of Exposure, averaged
over TargetSize in Experiment 2, showing the differences in
BeakOcclusion. When the beak is exposed, performance only
degrades if 25% or less of the icon is visible.

p<0.001), and TargetSize X Color X BeakOcclusion
(F3,380=4.23, p<0.01).

EXPERIMENT 2 DISCUSSION
The effects of color surprised us; our results did not support
H4. We had expected color to help performance, not
degrade it. Post-experimental interviews revealed that
participants did find the colors distracting and that the
colors were not discernable in small targets.

Our results support H5. Most participants said that they
used beak shape rather than color to determine gesture
direction; the results agreed with the participants’
statements. This confirmed our belief that Escape should
deliberately arrange icons to avoid beak occlusion.

Although no significant effect of Direction was found,
some participants did dislike some directions (NW, W, and
SW) because they involved stretching the thumb, whereas
other participants disliked other directions (S and SE)
because they involved contracting the thumb. This finding
implies that Escape might offer a user-definable parameter
to favor certain gesture directions over others.

ICON ARRANGEMENT
We now describe an algorithm to assign icons to target
positions. The algorithm’s primary task is to find an
assignment that allows icons to be well-separated from
other icons with the same gesture. Additionally, the system
should minimize icon overlap, especially of the beak. This
problem is similar to graph coloring [8], which is known to
be NP-complete even for planar graphs. Thus, there is no
known efficient optimal algorithm. Here we describe a
heuristic algorithm that appears to work well in practice.

Beak occlusion occurs when targets are located near each
other. To minimize the effects of closely spaced icons,

Escape attaches the tip of the icon’s beak to the target
location. The icon body may then be put in any of eight
possible locations around the target. This flexibility helps
avoid many occlusions that would occur if the target
location were instead attached to the icon center.

Our algorithm represents each target as a node in a graph.
Each node is connected by a link to all other nodes in its
neighborhood, defined as a 9.2 mm radius circle around the
target. Each node also has eight subnodes representing the
eight possible icons, and each subnode has a weight
representing the likelihood that the corresponding choice of
the icon will cause an occlusion or a violation of the spatial
constraint. The algorithm calculates the initial weight of
each subnode based only on occlusions. Subnodes close
enough to other nodes are given higher weights because
there is less freedom to place an icon there.

After the initial weight assignment, the algorithm first finds
the node that has the most other nodes in its neighborhood,
and then finds the subnode of that node with the least
weight. Then the weights at the neighborhood nodes are
updated by adding a large weight to their subnodes that
represent the same kind of icon. The algorithm proceeds in
this greedy manner, at each step choosing a least-weight
subnode for a node with the largest number of the
neighborhood nodes. The calculation stops when it has
assigned icons for all items.

To test the algorithm’s performance, we ran a simulation
that varied the number of onscreen targets from 10 to 100.
1000 screens of icons were tested for each number of
targets. The simulator chose target locations randomly, but
avoided a 20 pixel margin around the edges of the screen.
We considered a screen a success when the algorithm could
assign all icons to targets without violating the spatial
constraint. Figure 13 illustrates how our algorithm improves
upon a random icon assignment.

0

10

20

30

40

50

60

E NE N NW W SW S SE

Direction

Er
ro

r R
at

e
[%

]

Figure 12. The error rate for Direction, averaged over all other
independent variables in Experiment 2. Error rates are higher
than Figure 8 because target sizes are smaller.

0

500

1000

1500

2000

2500

3000

6 9 12
TargetSize [px]

P
er

fo
rm

an
ce

 T
im

e
[m

se
c]

BeakOcclusion = no / 1-colored
BeakOcclusion = yes / 1-colored
BeakOcclusion = no / 8-colored
BeakOcclusion = yes / 8-colored

Figure 11. The mean performance time for BeakOcclusion X
TargetSize X Color in Experiment 2, averaged over
participants and target exposure. The graph of error rates
looks similar, but has larger variance.

For a high rate of success, the algorithm can only handle
five icons per neighborhood, which works out to a density
of 2.3 icons per square centimeter. Note that this is for a
high success rate over an average density over 1000 screens,
some of which have concentrated regions with much higher
local neighborhood densities. The algorithm calculates the
arrangement of 100 items in around three seconds on a
Windows Mobile emulator.

Note that icon assignments can be precomputed offline in
some applications. Moreover, Escape can also be useful for
manually-designed user interfaces, in which case the
maximum density can be predictably achieved.

LIMITATIONS OF ESCAPE
The performance benefits of Escape do not come without
drawbacks. Many applications use selections in background
spaces to perform operations like map drags and generic
pop-up menus. Because Escape expands the selection zone
around a target, there is less open space in which to perform
a target-free selection. In some cases, this can be overcome
by using a more complex gesture (e.g., by making a multi-
segment gesture), but it is more work for the user.

Also, because Escape requires that icons indicate gesture,
the maximum number of onscreen selectable targets is less
than that of Offset Cursor and Shift, which can handle
selection of individual pixel elements. This excludes
applications like drawing programs, where pixel accuracy is
critical.

Finally, gestures cannot go beyond a screen edge, so the set
of icons allowed near the edge of the screen is more limited
than the set allowed at the center. This reduces target
density near the screen edge.

IMPROVEMENTS TO ESCAPE
Our user study also inspired additional variations that
would be useful for a practical deployment. In addition to
the design implications above, there are several other
improvements that could be made to Escape.

Enhancement to Thumb Gestures
Icon appearance is not the only possible cue to suggest a
gesture. In some cases, relative icon positions may be
sufficient. For example, dialog boxes containing two
adjacent buttons might use a rightward gesture to select the
right button, and a leftward gesture to select the left.

In our experiments, many participants desired a mechanism
to cancel an in-progress gesture. Escape could interpret
returning to the gesture starting point as a cancellation
operation.

Although the results from the second pilot study
discouraged us from two-level gestures because of our icon
design, there are other gesture mechanisms, such as multi-
length gestures or zone or polygon gestures [18] that might
be easier to use. While these gestures are easily performed
and easily distinguished, it is not obvious what icon designs
would suggest these gestures clearly in high-density
situations.

Arrangement-Specific Selection Zones
Greater densities and more layout flexibility can be
achieved if the selection region for an icon is not centered
on it. Two immediately adjacent icons, indicating identical
gestures, can still be easily distinguished if it is possible to
draw a Parhi box around each as long as there are no
additional icons with the same gesture inside those Parhi
boxes (see Figure 14). This works as long as all nearby
identical icons are visible, so the user knows on which side
of an icon to begin a gesture.

A variant of this idea is to expand a target’s initial selection
zone beyond a Parhi box to its cell in the Voronoi diagram
constructed from all targets. This approach has been shown
to improve selection performance in traditional target
selection [5]. However, it is important to limit the distance
at which a target could be selected, both to avoid confusion
when targets are far from the contact point, and to allow
background regions to support non-target selecting
commands.

Figure 14. Two icons with similar gesture directions can be
near each other if 9.2mm Parhi boxes can be drawn around
each such that they contain no other similar icons. The four
upward-pointing icons in (a) are well-separated; the three
upward-pointing icons in (b) are not.

Figure 13. By carefully assigning icons, overlaps and
unnecessary icon proximities can be avoided. (a) Random
assignment; (b) Our overlap-avoidance algorithm. The circled
region shows a case where the algorithm avoids placing
identical icons together, and the squared region shows how the
algorithm avoids icon overlap.

Generalized Distance
The method used in this paper to match gestures and targets
first limited the search space to icons within a Parhi Box,
and then found the icon with the most closely matching
gesture. An alternative is to frame the problem as finding
the closest icon represented by an (xi,yi,θi) point in a three-
dimensional space to the (xg,yg,θg) point given by the user’s
gesture. This approach would be more forgiving of
positioning errors and might reduce overall error rate.

Combining Escape and Shift
Escape and Shift could be combined to make a target
selection technique that would likely perform better than
Escape for icons six pixels wide and smaller. Dense target
clusters would bring up the Shift inset, after which the user
could more easily see the icons in that space and perform
the disambiguating gesture. The inset might not only
magnify the area, but also better separate dense icon groups
to make it easier to identify separate icons, and draw icons
with finer resolution than is possible at the base resolution.

CONCLUSIONS
We have presented a thumb-based touch screen target-
selection technique called Escape. In Escape, the user
establishes an initial approximate position of interest,
followed by a disambiguating gesture that is cued by the
target to be selected. A controlled study showed that Escape
is significantly faster than Shift while roughly matching its
accuracy. Although direct touch selection will likely be
faster than Escape for larger icons, poor accuracy rates
make Escape a preferred solution for smaller icons.

ACKNOWLEDGEMENTS
We would like to thank Bo Begole for making helpful
comments on this project, Ellen Isaacs and Diane Schiano
for their help for the experimental design, and Alan
Walendowski for helping us with the implementation of
Shift. We also thank Daniel Vogel for providing the code
for the dynamic low-pass filter and Khai N. Truong for
giving us comments on this paper. We thank all the
participants in our experiments for their help and
cooperation.

REFERENCES
1. Accot, J. and Zhai, S. More than dotting the i's ---

foundations for crossing-based interfaces. In
Proceedings of CHI ‘02, ACM Press (2002), 73-80.

2. Albinsson, P. and Zhai, S. High precision touch screen
interaction. In Proceedings of CHI '03, ACM Press
(2003), 105-112.

3. Benko, H., Wilson, A. D., and Baudisch, P. Precise
selection techniques for multi-touch screens. In
Proceedings of CHI '06, ACM Press (2006), 1263-1272.

4. Fitts, P. M. The information capacity of the human
motor system in controlling the amplitude of movement.
Journal of Experimental Psychology, 47(6), (1954),
381-391.

5. Grossman, T., and Balakrishnan, R. The bubble cursor:
enhancing target acquisition by dynamic resizing of the
cursor's activation area. In Proceedings of CHI '05,
ACM Press (2005), 281-290.

6. Guiard, Y., Blanch, R., and Beaudouin-Lafon, M.
Object pointing: a complement to bitmap pointing in
GUIs. In Proceedings of GI ’04, ACM Press (2004), 9-
16.

7. Hinckley, K., Baudisch, P., Ramos, G., and
Guimbretiere, F. Design and analysis of delimiters for
selection-action pen gesture phrases in scriboli. In
Proceedings of CHI '05, ACM Press (2005), 451-460.

8. Johnson, D. S. Approximation algorithms for
combinatorial problems. Journal of Computer and
System Sciences, 9(3), (1974), 256-278.

9. Karlson, A. K., and Bederson, B. B. ThumbSpace:
generalized one-handed input for touchscreen-based
mobile devices, In Proceedings of INTERACT ‘07,
Springer (2007), 324-338.

10.Karlson, A. K., Bederson, B. B., Contreras-Vidal, J.
Understanding one handed use of mobile devices,
Handbook of Research on User Interface Design and
Evaluation for Mobile Technology, Idea Group, 2007.

11.Karlson, A. K., Bederson, B. B., and SanGiovanni, J.
AppLens and LaunchTile: two designs for one-handed
thumb use on small devices. In Proceedings of CHI ’05,
ACM Press (2005), 201-210.

12.Kurtenbach, G. and Buxton, W. The limits of expert
performance using hierarchical marking menus. In
INTERCHI ’93, ACM Press (1993), 482-487.

13.Parhi, P., Karlson, A. K., and Bederson, B. B. Target
size study for one-handed thumb use on small
touchscreen devices. In Proceedings of MobileHCI ’06,
ACM Press (2006), 203-210.

14.Perlin, K. Quikwriting: continuous stylus-based text
entry. In Proceedings of the UIST '98, ACM Press
(1998), 215-216.

15.Potter, R. L., Weldon, L. J., and Shneiderman, B..
Improving the accuracy of touch screens: an
experimental evaluation of three strategies. In
Proceedings of CHI ’88, ACM Press (1988), 27-32.

16.Sears, A. and B. Shneiderman, High precision
touchscreens: design strategies and comparison with a
mouse. International Journal of Man-Machine Studies,
43(4), (1991), 593-613.

17.Vogel, D. and Baudisch, P. Shift: a technique for
operating pen-based interfaces using touch. In
Proceedings of CHI '07, ACM Press (2007), 657-666.

18.Zhao, S., Agrawala, M., and Hinckley, K. Zone and
polygon menus: using relative position to increase the
breadth of multi-stroke marking menus. In Proceedings
of CHI’06, ACM Press (2006), 1077-1086.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

